ترغب بنشر مسار تعليمي؟ اضغط هنا

The evolved pulsating CEMP star HD112869

95   0   0.0 ( 0 )
 نشر من قبل Laimons Zacs
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Radial velocity measurements, $BVR_C$ photometry, and high-resolution spectroscopy in the wavelength region from blue to near infrared are employed in order to clarify the evolutionary status of the carbon-enhanced metal-poor star HD112869 with unique ratio of carbon isotopes in the atmosphere. An LTE abundance analysis was carried out using the method of spectral synthesis and new self consistent 1D atmospheric models. The radial velocity monitoring confirmed semiregular variations with a peak-to-peak amplitude of about 10 km $s^{-1}$ and a dominating period of about 115 days. The light, color and radial velocity variations are typical of the evolved pulsating stars. The atmosphere of HD112869 appears to be less metal-poor than reported before, [Fe/H] = -2.3 $pm$0.2 dex. Carbon to oxygen and carbon isotope ratios are found to be extremely high, C/O $simeq$ 12.6 and $^{12}C/^{13}C gtrsim$ 1500, respectively. The s-process elements yttrium and barium are not enhanced, but neodymium appears to be overabundant. The magnesium abundance seems to be lower than the average found for CEMP stars, [Mg/Fe] < +0.4 dex. HD112869 could be a single low mass halo star in the stage of asymptotic giant branch evolution


قيم البحث

اقرأ أيضاً

A radial-velocity monitoring of the Carbon-Enhanced Metal-Poor (CEMP) star HE 0017+0055 over 8 years with the Nordic Optical Telescope and Mercator telescopes reveals variability with a period of 384 d and amplitude of 540$pm27$ m s$^{-1}$, superimpo sed on a nearly linear long-term decline of $sim$1 m s$^{-1}$ day$^{-1}$. High-resolution HERMES/Mercator and Keck/HIRES spectra have been used to derive elemental abundances using 1-D LTE MARCS models. A metallicity of [Fe/H] $sim -2.4$ is found, along with s-process overabundances on the order of 2 dex (with the exception of [Y/Fe] $sim+0.5$), and most notably overabundances of r-process elements like Sm, Eu, Dy, and Er in the range 0.9 - 2.0 dex. With [Ba/Fe] $ > 1.9$ dex and [Eu/Fe] = 2.3 dex, HE 0017+0055 is a CEMP-rs star. It appears to be a giant star below the tip of the red giant branch (RGB). The s-process pollution must therefore originate from mass transfer from a companion formerly on the AGB, now a carbon-oxygen white dwarf (WD). If the 384 d velocity variations are attributed to the WD companion, its orbit must be seen almost face-on, with $i sim 2.3^circ$, because the mass function is very small: $f(M_1,M_2) = (6.1pm1.1)times10^{-6}$ Msun. Alternatively, the WD orbital motion could be responsible for the long-term velocity variations, with a period of several decades. The 384 d variations should then be attributed either to a low-mass inner companion (perhaps a brown dwarf, depending on the orbital inclination), or to stellar pulsations. The latter possibility is made likely by the fact that similar low-amplitude velocity variations, with periods close to 1 yr, have been reported for other CEMP stars in a companion paper (Jorissen et al., 2015). A definite conclusion about the origin of the 384 d velocity variations should however await the detection of synchronous low-amplitude photometric variations.
In this article we present an overview of the ESA Gaia mission and of the unprecedented impact that Gaia will have on the field of variable star research. We summarise the contents and impact of the first Gaia data release on the description of varia bility phenomena, with particular emphasis on pulsating star research. The Tycho-Gaia astrometric solution, although limited to 2.1 million stars, has been used in many studies related to pulsating stars. Furthermore a set of 3,194 Cepheids and RR Lyrae stars with their times series have been released. Finally we present the plans for the ongoing study of variable phenomena with Gaia and highlight some of the possible impacts of the second data release on variable, and specifically, pulsating stars.
A spectroscopic analysis of SDSS J160043.6+074802.9, a binary system containing a pulsating subdwarf-O (sdO) star with a late-type companion, yields Teff = 70 000 +/- 5000 K and log g = 5.25 +/- 0.30, together with a most likely type of K3V for the s econdary star. We compare our results with atmospheric parameters derived by Fontaine et al. (2008) and in the context of existing evolution models for sdO stars. New and more extensive photometry is also presented which recovers most, but not all, frequencies found in an earlier paper. It therefore seems probable that some pulsation modes have variable amplitudes. A non-adiabatic pulsation analysis of uniform metallicity sdO models show those having log g > 5.3 to be more likely to be unstable and capable of driving pulsation in the observed frequency range.
We provide an updated discussion of the sample of CEMP-s and CEMP-s/r stars collected from the literature. Observations are compared with the theoretical nucleosynthesis models of asymptotic giant branch (AGB) stars presented by Bisterzo et al. (2010 , 2011, 2012), in the light of the most recent spectroscopic results.
Carbon-enhanced metal-poor (CEMP) stars bear important imprints of the early chemical enrichment of any stellar system. While these stars are known to exist in copious amounts in the Milky Way halo, detailed chemical abundance data from the faint dwa rf spheroidal (dSph) satellites are still sparse, although the relative fraction of these stars increases with decreasing metallicity. Here, we report the abundance analysis of a metal-poor ([Fe/H]=$-2.5$ dex), carbon-rich ([C/Fe]=1.4 dex) star, ALW-8, in the Carina dSph using high-resolution spectroscopy obtained with the ESO/UVES instrument. Its spectrum does not indicate any over-enhancements of neutron capture elements. Thus classified as a CEMP-no star, this is the first detection of this kind of star in Carina. Another of our sample stars, ALW-1, is shown to be a CEMP-$s$ star, but its immediate binarity prompted us to discard it from a detailed analysis. The majority of the 18 chemical elements we measured are typical of Carinas field star population and also agree with CEMP stars in other dSph galaxies. Similar to the only known CEMP-no star in the Sculptor dSph and the weak-$r$-process star HD 122563, the lack of any strong barium-enhancement is accompanied by a moderate overabundance in yttrium, indicating a weak $r$-process activity. The overall abundance pattern confirms that, also in Carina, the formation site for CEMP-no stars has been affected by both faint supernovae and by standard core collapse supernovae. Whichever process was responsible for the heavy element production in ALW-8 must be a ubiquitous source to pollute the CEMP-no stars, acting independently of the environment such as in the Galactic halo or in dSphs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا