ترغب بنشر مسار تعليمي؟ اضغط هنا

High fidelity transfer and storage of photon states in a single nuclear spin

206   0   0.0 ( 0 )
 نشر من قبل Sen Yang
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Building a quantum repeater network for long distance quantum communication requires photons and quantum registers that comprise qubits for interaction with light, good memory capabilities and processing qubits for storage and manipulation of photons. Here we demonstrate a key step, the coherent transfer of a photon in a single solid-state nuclear spin qubit with an average fidelity of 98% and storage over 10 seconds. The storage process is achieved by coherently transferring a photon to an entangled electron-nuclear spin state of a nitrogen vacancy centre in diamond, confirmed by heralding through high fidelity single-shot readout of the electronic spin states. Stored photon states are robust against repetitive optical writing operations, required for repeater nodes. The photon-electron spin interface and the nuclear spin memory demonstrated here constitutes a major step towards practical quantum networks, and surprisingly also paves the way towards a novel entangled photon source for photonic quantum computing.

قيم البحث

اقرأ أيضاً

A single nuclear spin holds the promise of being a long-lived quantum bit or quantum memory, with the high fidelities required for fault-tolerant quantum computing. We show here that such promise could be fulfilled by a single phosphorus (31P) nuclea r spin in a silicon nanostructure. By integrating single-shot readout of the electron spin with on-chip electron spin resonance, we demonstrate the quantum non-demolition, electrical single-shot readout of the nuclear spin, with readout fidelity better than 99.8% - the highest for any solid-state qubit. The single nuclear spin is then operated as a qubit by applying coherent radiofrequency (RF) pulses. For an ionized 31P donor we find a nuclear spin coherence time of 60 ms and a 1-qubit gate control fidelity exceeding 98%. These results demonstrate that the dominant technology of modern electronics can be adapted to host a complete electrical measurement and control platform for nuclear spin-based quantum information processing.
The quantum coherence and gate fidelity of electron spin qubits in semiconductors is often limited by noise arising from coupling to a bath of nuclear spins. Isotopic enrichment of spin-zero nuclei such as $^{28}$Si has led to spectacular improvement s of the dephasing time $T_2^*$ which, surprisingly, can extend two orders of magnitude beyond theoretical expectations. Using a single-atom $^{31}$P qubit in enriched $^{28}$Si, we show that the abnormally long $T_2^*$ is due to the controllable freezing of the dynamics of the residual $^{29}$Si nuclei close to the donor. Our conclusions are supported by a nearly parameter-free modeling of the $^{29}$Si nuclear spin dynamics, which reveals the degree of back-action provided by the electron spin as it interacts with the nuclear bath. This study clarifies the limits of ergodic assumptions in analyzing many-body spin-problems under conditions of strong, frequent measurement, and provides novel strategies for maximizing coherence and gate fidelity of spin qubits in semiconductors.
The ability to coherently couple arbitrary harmonic oscillators in a fully-controlled way is an important tool to process quantum information. Coupling between quantum harmonic oscillators has previously been demonstrated in several physical systems by use of a two-level system as a mediating element. Direct interaction at the quantum level has only recently been realized by use of resonant coupling between trapped ions. Here we implement a tunable direct coupling between the microwave harmonics of a superconducting resonator by use of parametric frequency conversion. We accomplish this by coupling the mode currents of two harmonics through a superconducting quantum interference device (SQUID) and modulating its flux at the difference (~ 7 GHz) of the harmonic frequencies. We deterministically prepare a single-photon Fock state and coherently manipulate it between multiple modes, effectively controlling it in a superposition of two different colours. This parametric interaction can be described as a beam-splitter-like operation that couples different frequency modes. As such, it could be used to implement linear optical quantum computing protocols on-chip.
We demonstrate a new method for projective single-shot measurement of two electron spin states (singlet versus triplet) in an array of gate-defined lateral quantum dots in GaAs. The measurement has very high fidelity and is robust with respect to ele ctric and magnetic fluctuations in the environment. It exploits a long-lived metastable charge state, which increases both the contrast and the duration of the charge signal distinguishing the two measurement outcomes. This method allows us to evaluate the charge measurement error and the spin-to-charge conversion error separately. We specify conditions under which this method can be used, and project its general applicability to scalable quantum dot arrays in GaAs or silicon.
The driven-damped Jaynes-Cummings model in the regime of strong coupling is found to exhibit a coexistence between the quantum photon blockaded state and a quasi-coherent bright state. We characterize the slow time scales and the basin of attraction of these metastable states using full quantum simulations. This form of bistability can be useful for implementing a qubit readout scheme that does not require additional circuit elements. We propose a coherent control sequence that makes use of a simple linear chirp of drive amplitude and frequency as well as qubit frequency. By optimizing the parameters of the system and the control pulse we demonstrate theoretically very high readout fidelities (>98%) and high contrast, with experimentally realistic parameters for qubits implemented in the circuit QED architecture.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا