ﻻ يوجد ملخص باللغة العربية
This paper is due to appear as a chapter of the forthcoming Handbook of Approximate Bayesian Computation (ABC) by S. Sisson, L. Fan, and M. Beaumont. We describe the challenge of calibrating climate simulators, and discuss the differences in emphasis in climate science compared to many of the more traditional ABC application areas. The primary difficulty is how to do inference with a computationally expensive simulator which we can only afford to run a small number of times, and we describe how Gaussian process emulators are used as surrogate models in this case. We introduce the idea of history matching, which is a non-probabilistic calibration method, which divides the parameter space into (not im)plausible and implausible regions. History matching can be shown to be a special case of ABC, but with a greater emphasis on defining realistic simulator discrepancy bounds, and using these to define tolerances and metrics. We describe a design approach for choosing parameter values at which to run the simulator, and illustrate the approach on a toy climate model, showing that with careful design we can find the plausible region with a very small number of model evaluations. Finally, we describe how calibrated GENIE-1 (an earth system model of intermediate complexity) predictions have been used, and why it is important to accurately characterise parametric uncertainty.
In this tutorial we schematically illustrate four algorithms: (1) ABC rejection for parameter estimation (2) ABC SMC for parameter estimation (3) ABC rejection for model selection on the joint space (4) ABC SMC for model selection on the joint space.
For nearly any challenging scientific problem evaluation of the likelihood is problematic if not impossible. Approximate Bayesian computation (ABC) allows us to employ the whole Bayesian formalism to problems where we can use simulations from a model
The problem of estimating certain distributions over ${0,1}^d$ is considered here. The distribution represents a quantum system of $d$ qubits, where there are non-trivial dependencies between the qubits. A maximum entropy approach is adopted to recon
Health economic evaluations often require predictions of survival rates beyond the follow-up period. Parametric survival models can be more convenient for economic modelling than the Cox model. The generalized gamma (GG) and generalized F (GF) distri
In recent years dynamical modelling has been provided with a range of breakthrough methods to perform exact Bayesian inference. However it is often computationally unfeasible to apply exact statistical methodologies in the context of large datasets a