ﻻ يوجد ملخص باللغة العربية
Accurate stellar parameters are needed in numerous domains of astrophysics. The position of stars on the H-R diagram is an important indication of their structure and evolution, and it helps improve stellar models. Furthermore, the age and mass of stars hosting planets are required elements for studying exoplanetary systems. We aim at determining accurate parameters of a set of 18 bright exoplanet host and potential host stars from interferometric measurements, photometry, and stellar models. Using the VEGA/CHARA interferometer, we measured the angular diameters of 18 stars, ten of which host exoplanets. We combined them with their distances to estimate their radii. We used photometry to derive their bolometric flux and, then, their effective temperature and luminosity to place them on the H-R diagram. We then used the PARSEC models to derive their best fit ages and masses, with error bars derived from MC calculations. Our interferometric measurements lead to an average of 1.9% uncertainty on angular diameters and 3% on stellar radii. There is good agreement between measured and indirect estimations of angular diameters (from SED fitting or SB relations) for MS stars, but not as good for more evolved stars. For each star, we provide a likelihood map in the mass-age plane; typically, two distinct sets of solutions appear (an old and a young age). The errors on the ages and masses that we provide account for the metallicity uncertainties, which are often neglected by other works. From measurements of its radius and density, we also provide the mass of 55 Cnc independently of models. From the stellar masses, we provide new estimates of semi-major axes and minimum masses of exoplanets with reliable uncertainties. We also derive the radius, density, and mass of 55 Cnc e, a super-Earth that transits its stellar host. Our exoplanetary parameters reflect the known population of exoplanets.
We report the discovery of two transiting brown dwarfs (BDs), TOI-811b and TOI-852b, from NASAs Transiting Exoplanet Survey Satellite mission. These two transiting BDs have similar masses, but very different radii and ages. Their host stars have simi
Due to the importance that the star-planet relation has to our understanding of the planet formation process, the precise determination of stellar parameters for the ever increasing number of discovered extra-solar planets is of great relevance. Furt
For studies of Galactic evolution, the accurate characterization of stars in terms of their evolutionary stage and population membership is of fundamental importance. A standard approach relies on extracting this information from stellar evolution mo
We discuss new limits on masses and radii of compact stars and we conclude that they can be interpreted as an indication of the existence of two classes of stars: normal compact stars and ultra-compact stars. We estimate the critical mass at which the first configuration collapses into the second.
We determine the radii and masses of 293 nearby, bright M dwarfs of the CARMENES survey. This is the first time that such a large and homogeneous high-resolution (R>80 000) spectroscopic survey has been used to derive these fundamental stellar parame