ﻻ يوجد ملخص باللغة العربية
We present an updated status of the EDGE project, which is a survey of 125 local galaxies in the $^{12}$CO($1-0$) and $^{13}$CO($1-0$) lines. We combine the molecular data of the EDGE survey with the stellar and ionized gas maps of the CALIFA survey to give a comprehensive view of the dependence of the star formation efficiency, or equivalently, the molecular gas depletion time, on various local environments, such as the stellar surface density, metallicity, and radius from the galaxy center. This study will provide insight into the parameters that drive the star formation efficiency in galaxies at $z sim 0$.
This paper provides an update of our previous scaling relations (Genzel et al.2015) between galaxy integrated molecular gas masses, stellar masses and star formation rates, in the framework of the star formation main-sequence (MS), with the main goal
We present results from the EDGE survey, a spatially resolved CO(1-0) follow-up to CALIFA, an optical Integral Field Unit (IFU) survey of local galaxies. By combining the data products of EDGE and CALIFA, we study the variation in molecular gas deple
We investigate the dust and gas distribution in the disk around HD 142527 based on ALMA observations of dust continuum, 13CO(3-2), and C18O(3-2) emission. The disk shows strong azimuthal asymmetry in the dust continuum emission, while gas emission is
We present a model that explains why galaxies form stars on a time scale significantly longer than the time scales of processes governing the evolution of interstellar gas. We show that gas evolves from a non-star-forming to a star-forming state on a
We combine new sensitive, wide-field CO data from the HERACLES survey with ultraviolet and infrared data from GALEX and Spitzer to compare the surface densities of H2, Sigma_H2, and recent star formation rate, Sigma_SFR, over many thousands of positi