ﻻ يوجد ملخص باللغة العربية
Statistical models are essential to get a better understanding of the role of disorder in brittle disordered solids. Fiber bundle models play a special role as a paradigm, with a very good balance of simplicity and non-trivial effects. We introduce here a variant of the fiber bundle model where the load is transferred among the fibers through a very compliant membrane. This Soft Membrane fiber bundle mode reduces to the classical Local Load Sharing fiber bundle model in 1D. Highlighting the continuum limit of the model allows to compute an equivalent toughness for the fiber bundle and hence discuss nucleation of a critical defect. The computation of the toughness allows for drawing a simple connection with crack front propagation (depinning) models.
While we fundamentally understand the dynamics of simple cracks propagating in brittle solids within perfect (homogeneous) materials, we do not understand how paths of moving cracks are determined. We experimentally study strongly perturbed cracks th
Amorphous solids display a ductile to brittle transition as the kinetic stability of the quiescent glass is increased, which leads to a material failure controlled by the sudden emergence of a macroscopic shear band in quasi-static protocols. We nume
Spatial heterogeneity in the elastic properties of soft random solids is examined via vulcanization theory. The spatial heterogeneity in the emph{structure} of soft random solids is a result of the fluctuations locked-in at their synthesis, which als
We study the local load sharing fiber bundle model and its energy burst statistics. While it is known that the avalanche size distribution of the model is exponential, we numerically show here that the avalanche size ($s$) and the corresponding energ
We demonstrate how supercell implementations of conventional lattice dynamical calculations can be used to determine the extent and nature of disorder-induced broadening in the phonon dispersion spectrum of disordered crystalline materials. The appro