ﻻ يوجد ملخص باللغة العربية
The $s_pm$ and $s_{++}$ models for the superconducting state are subject of intense studies regarding Fe-based superconductors. Depending on the parameters, disorder may leave intact or suppress $T_c$ in these models. Here we study the special case of disorder with equal values of intra- and interband impurity potentials in the two-band $s_pm$ and $s_{++}$ models. We show that this case can be considered as an isolated point and $T_c$ there has maximal damping for a wide range of parameters.
Irradiation of superconductors with different particles is one of many ways to investigate effects of disorder. Here we study the disorder-induced transition between $s_pm$ and $s_{++}$ states in two-band model for Fe-based superconductors with nonma
Based on a two-band model, we study the electronic Raman scattering intensity in both normal and superconducting states of iron-pnictide superconductors. For the normal state, due to the match or mismatch of the symmetries between band hybridization
Impurity nuclear spin relaxation is studied theoretically. A single impurity generates a bound state localized around the impurity atom in unconventional superconductors. With increasing impurity potential, the relaxation rate $T_1^{-1}$ is reduced b
We report theoretical and experimental studies of the effect of Zn-impurity in Fe-based superconductors. Zn-impurity is expected to severely suppress sign reversed s$_pm$ wave pairing. The experimentally observed suppression of T$_c$ under Zn-doping
The origin of the exceptionally strong superconductivity of cuprates remains a subject of debate after more than two decades of investigation. Here we follow a new lead: The onset temperature for superconductivity scales with the strength of the anom