ترغب بنشر مسار تعليمي؟ اضغط هنا

The Planck-ATCA Co-eval Observations (PACO) project: analysis of radio source properties between 5 and 217 GHz

79   0   0.0 ( 0 )
 نشر من قبل Marcella Massardi
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Planck-ATCA Co-eval Observations (PACO) project has yielded observations of 464 sources with the Australia Telescope Compact Array (ATCA) between 4.5 and 40 GHz. The main purpose of the project was to investigate the spectral properties of mm-selected radio sources at frequencies below and overlapping with the ESAs Planck satellite frequency bands, minimizing the variability effects by observing almost simultaneously with the first two Planck all-sky surveys. In this paper we present the whole catalogue of observations in total intensity. By comparing PACO with the various measures of Planck Catalog of Compact Sources (PCCS) flux densities we found the best consistency with the PCCS detection pipeline photometry (DETFLUX) that we used to investigate the spectral properties of sources from 5 to 217 GHz. Of our sources, 91% have remarkably smooth spectrum, well described by a double power law over the full range. This suggests a single emitting region, at variance with the notion that flat spectra result from the superposition of the emissions from different compact regions, self absorbed up to different frequencies. Most of the objects show a spectral steepening above 30 GHz, consistent with synchrotron emission becoming optically thin. Thus, the classical dichotomy between flat-spectrum/compact and steep-spectrum/extended radio sources, well established at cm wavelengths, breaks down at mm wavelengths. The mm-wave spectra do not show indications of the spectral break expected as the effect of electron ageing, suggesting young source ages.

قيم البحث

اقرأ أيضاً

A fraction of galaxy clusters host diffuse radio sources whose origins are investigated through multi-wavelength studies of cluster samples. We investigate the presence of diffuse radio emission in a sample of seven galaxy clusters in the largely une xplored intermediate redshift range (0.3 < z < 0.44). In search of diffuse emission, deep radio imaging of the clusters are presented from wide band (1.1-3.1 GHz), full resolution ($sim$ 5 arcsec) observations with the Australia Telescope Compact Array (ATCA). The visibilities were also imaged at lower resolution after point source modelling and subtraction and after a taper was applied to achieve better sensitivity to low surface brightness diffuse radio emission. In case of non-detection of diffuse sources, we set upper limits for the radio power of injected diffuse radio sources in the field of our observations. Furthermore, we discuss the dynamical state of the observed clusters based on an X-ray morphological analysis with XMM-Newton. We detect a giant radio halo in PSZ2 G284.97-23.69 (z=0.39) and a possible diffuse source in the nearly relaxed cluster PSZ2 G262.73-40.92 (z=0.421). Our sample contains three highly disturbed massive clusters without clear traces of diffuse emission at the observed frequencies. We were able to inject modelled radio halos with low values of total flux density to set upper detection limits; however, with our high-frequency observations we cannot exclude the presence of RH in these systems because of the sensitivity of our observations in combination with the high z of the observed clusters.
A complete, flux density limited sample of 96 faint ($> 0.5$ mJy) radio sources is selected from the 10C survey at 15.7 GHz in the Lockman Hole. We have matched this sample to a range of multi-wavelength catalogues, including SERVS, SWIRE, UKIDSS and optical data; multi-wavelength counterparts are found for 80 of the 96 sources and spectroscopic redshifts are available for 24 sources. Photometric reshifts are estimated for the sources with multi-wavelength data available; the median redshift of the sample is 0.91 with an interquartile range of 0.84. Radio-to-optical ratios show that at least 94 per cent of the sample are radio loud, indicating that the 10C sample is dominated by radio galaxies. This is in contrast to samples selected at lower frequencies, where radio-quiet AGN and starforming galaxies are present in significant numbers at these flux density levels. All six radio-quiet sources have rising radio spectra, suggesting that they are dominated by AGN emission. These results confirm the conclusions of Paper I that the faint, flat-spectrum sources which are found to dominate the 10C sample below $sim 1$ mJy are the cores of radio galaxies. The properties of the 10C sample are compared to the SKADS Simulated Skies; a population of low-redshift starforming galaxies predicted by the simulation is not found in the observed sample.
We investigate the possible presence of diffuse radio emission in the intermediate redshift, massive cluster PLCK G285.0-23.7 (z=0.39, M_500 = 8.39 x 10^(14) M_Sun). Our 16cm-band ATCA observations of PLCK G285.0-23.7 allow us to reach a rms noise le vel of ~11 microJy/beam on the wide-band (1.1-3.1 GHz), full-resolution (~5 arcsec) image of the cluster, making it one of the deepest ATCA images yet published. We also re-image visibilities at lower resolution in order to achieve a better sensitivity to low-surface-brightness extended radio sources. We detect one of the lowest luminosity radio halos known at z>0.35, characterised by a slight offset from the well-studied 1.4 GHz radio power vs. cluster mass correlation. Similarly to most known radio-loud clusters (i.e. those hosting diffuse non-thermal sources), PLCK G285.0-23.7 has a disturbed dynamical state. Our analysis reveals a similarly elongated X-ray and radio morphology. While the size of the radio halo in PLCK G285.0-23.7 is smaller than lower redshift radio-loud clusters in the same mass range, it shows a similar correlation with the cluster virial radius, as expected in the framework of hierarchical structure formation.
The Lockman Hole is a well-studied extragalactic field with extensive multi-band ancillary data covering a wide range in frequency, essential for characterising the physical and evolutionary properties of the various source populations detected in de ep radio fields (mainly star-forming galaxies and AGNs). In this paper we present new 150-MHz observations carried out with the LOw Frequency ARray (LOFAR), allowing us to explore a new spectral window for the faint radio source population. This 150-MHz image covers an area of 34.7 square degrees with a resolution of 18.6$times$14.7 arcsec and reaches an rms of 160 $mu$Jy beam$^{-1}$ at the centre of the field. As expected for a low-frequency selected sample, the vast majority of sources exhibit steep spectra, with a median spectral index of $alpha_{150}^{1400}=-0.78pm0.015$. The median spectral index becomes slightly flatter (increasing from $alpha_{150}^{1400}=-0.84$ to $alpha_{150}^{1400}=-0.75$) with decreasing flux density down to $S_{150} sim$10 mJy before flattening out and remaining constant below this flux level. For a bright subset of the 150-MHz selected sample we can trace the spectral properties down to lower frequencies using 60-MHz LOFAR observations, finding tentative evidence for sources to become flatter in spectrum between 60 and 150 MHz. Using the deep, multi-frequency data available in the Lockman Hole, we identify a sample of 100 Ultra-steep spectrum (USS) sources and 13 peaked spectrum sources. We estimate that up to 21 percent of these could have $z>4$ and are candidate high-$z$ radio galaxies, but further follow-up observations are required to confirm the physical nature of these objects.
Dwarf spheroidal (dSph) galaxies are key objects in near-field cosmology, especially in connection to the study of galaxy formation and evolution at small scales. In addition, dSphs are optimal targets to investigate the nature of dark matter. Howeve r, while we begin to have deep optical photometric observations of the stellar population in these objects, little is known so far about their diffuse emission at any observing frequency, and hence on thermal and non-thermal plasma possibly residing within dSphs. In this paper, we present deep radio observations of six local dSphs performed with the Australia Telescope Compact Array at 16 cm wavelength. We mosaiced a region of radius of about one degree around three classical dSphs, Carina, Fornax, and Sculptor, and of about half of degree around three ultra-faint dSphs, BootesII, Segue2, and Hercules. The rms noise level is below 0.05 mJy for all the maps. The restoring beams FWHM ranged from 4.2 x 2.5 arcseconds to 30.0 x 2.1 arcseconds in the most elongated case. A catalogue including the 1392 sources detected in the six dSph fields is reported. The main properties of the background sources are discussed, with positions and fluxes of brightest objects compared with the FIRST, NVSS, and SUMSS observations of the same fields. The observed population of radio emitters in these fields is dominated by synchrotron sources. We compute the associated source number counts at 2 GHz down to fluxes of 0.25 mJy, which prove to be in agreement with AGN count models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا