ترغب بنشر مسار تعليمي؟ اضغط هنا

Improved Approximation Algorithms for Relay Placement

98   0   0.0 ( 0 )
 نشر من قبل Jukka Suomela
 تاريخ النشر 2015
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In the relay placement problem the input is a set of sensors and a number $r ge 1$, the communication range of a relay. In the one-tier version of the problem the objective is to place a minimum number of relays so that between every pair of sensors there is a path through sensors and/or relays such that the consecutive vertices of the path are within distance $r$ if both vertices are relays and within distance 1 otherwise. The two-tier version adds the restrictions that the path must go through relays, and not through sensors. We present a 3.11-approximation algorithm for the one-tier version and a PTAS for the two-tier version. We also show that the one-tier version admits no PTAS, assuming P $ e$ NP.



قيم البحث

اقرأ أيضاً

100 - Thomas Bosman , Neil Olver 2019
We give new approximation algorithms for the submodular joint replenishment problem and the inventory routing problem, using an iterative rounding approach. In both problems, we are given a set of $N$ items and a discrete time horizon of $T$ days in which given demands for the items must be satisfied. Ordering a set of items incurs a cost according to a set function, with properties depending on the problem under consideration. Demand for an item at time $t$ can be satisfied by an order on any day prior to $t$, but a holding cost is charged for storing the items during the intermediate period; the goal is to minimize the sum of the ordering and holding cost. Our approximation factor for both problems is $O(log log min(N,T))$; this improves exponentially on the previous best results.
We consider the $k$-clustering problem with $ell_p$-norm cost, which includes $k$-median, $k$-means and $k$-center cost functions, under an individual notion of fairness proposed by Jung et al. [2020]: given a set of points $P$ of size $n$, a set of $k$ centers induces a fair clustering if for every point $vin P$, $v$ can find a center among its $n/k$ closest neighbors. Recently, Mahabadi and Vakilian [2020] showed how to get a $(p^{O(p)},7)$-bicriteria approximation for the problem of fair $k$-clustering with $ell_p$-norm cost: every point finds a center within distance at most $7$ times its distance to its $(n/k)$-th closest neighbor and the $ell_p$-norm cost of the solution is at most $p^{O(p)}$ times the cost of an optimal fair solution. In this work, for any $varepsilon>0$, we present an improved $(16^p +varepsilon,3)$-bicriteria approximation for the fair $k$-clustering with $ell_p$-norm cost. To achieve our guarantees, we extend the framework of [Charikar et al., 2002, Swamy, 2016] and devise a $16^p$-approximation algorithm for the facility location with $ell_p$-norm cost under matroid constraint which might be of an independent interest. Besides, our approach suggests a reduction from our individually fair clustering to a clustering with a group fairness requirement proposed by Kleindessner et al. [2019], which is essentially the median matroid problem [Krishnaswamy et al., 2011].
The point placement problem is to determine the positions of a set of $n$ distinct points, P = {p1, p2, p3, ..., pn}, on a line uniquely, up to translation and reflection, from the fewest possible distance queries between pairs of points. Each distan ce query corresponds to an edge in a graph, called point placement graph ppg, whose vertex set is P. The uniqueness requirement of the placement translates to line rigidity of the ppg. In this paper we show how to construct in 2 rounds a line rigid point placement graph of size 9n/7 + O(1). This improves the existing best result of 4n/3 + O(1). We also improve the lower bound on 2-round algorithms from 17n/16 to 9n/8.
In the time-decay model for data streams, elements of an underlying data set arrive sequentially with the recently arrived elements being more important. A common approach for handling large data sets is to maintain a emph{coreset}, a succinct summar y of the processed data that allows approximate recovery of a predetermined query. We provide a general framework that takes any offline-coreset and gives a time-decay coreset for polynomial time decay functions. We also consider the exponential time decay model for $k$-median clustering, where we provide a constant factor approximation algorithm that utilizes the online facility location algorithm. Our algorithm stores $mathcal{O}(klog(hDelta)+h)$ points where $h$ is the half-life of the decay function and $Delta$ is the aspect ratio of the dataset. Our techniques extend to $k$-means clustering and $M$-estimators as well.
In the problem of adaptive compressed sensing, one wants to estimate an approximately $k$-sparse vector $xinmathbb{R}^n$ from $m$ linear measurements $A_1 x, A_2 x,ldots, A_m x$, where $A_i$ can be chosen based on the outcomes $A_1 x,ldots, A_{i-1} x $ of previous measurements. The goal is to output a vector $hat{x}$ for which $$|x-hat{x}|_p le C cdot min_{ktext{-sparse } x} |x-x|_q,$$ with probability at least $2/3$, where $C > 0$ is an approximation factor. Indyk, Price and Woodruff (FOCS11) gave an algorithm for $p=q=2$ for $C = 1+epsilon$ with $Oh((k/epsilon) loglog (n/k))$ measurements and $Oh(log^*(k) loglog (n))$ rounds of adaptivity. We first improve their bounds, obtaining a scheme with $Oh(k cdot loglog (n/k) +(k/epsilon) cdot loglog(1/epsilon))$ measurements and $Oh(log^*(k) loglog (n))$ rounds, as well as a scheme with $Oh((k/epsilon) cdot loglog (nlog (n/k)))$ measurements and an optimal $Oh(loglog (n))$ rounds. We then provide novel adaptive compressed sensing schemes with improved bounds for $(p,p)$ for every $0 < p < 2$. We show that the improvement from $O(k log(n/k))$ measurements to $O(k log log (n/k))$ measurements in the adaptive setting can persist with a better $epsilon$-dependence for other values of $p$ and $q$. For example, when $(p,q) = (1,1)$, we obtain $O(frac{k}{sqrt{epsilon}} cdot log log n log^3 (frac{1}{epsilon}))$ measurements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا