ﻻ يوجد ملخص باللغة العربية
We present a rigorous analysis of the Magnesium Aluminum Chloro Complex (MACC) in tetrahydrofuran (THF), one of the few electrolytes that can reversibly plate and strip Mg. We use emph{ab initio} calculations and classical molecular dynamics simulations to interrogate the MACC electrolyte composition with the goal of addressing two urgent questions that have puzzled battery researchers: emph{i}) the functional species of the electrolyte, and emph{ii}) the complex equilibria regulating the MACC speciation after prolonged electrochemical cycling, a process termed as conditioning, and after prolonged inactivity, a process called aging. A general computational strategy to untangle the complex structure of electrolytes, ionic liquids and other liquid media is presented. The analysis of formation energies and grand-potential phase diagrams of Mg-Al-Cl-THF suggests that the MACC electrolyte bears a simple chemical structure with few simple constituents, namely the electro-active species MgCl$^+$ and AlCl$_4^-$ in equilibrium with MgCl$_2$ and AlCl$_3$. Knowledge of the stable species of the MACC electrolyte allows us to determine the most important equilibria occurring during electrochemical cycling. We observe that Al deposition is always preferred to Mg deposition, explaining why freshly synthesized MACC cannot operate and needs to undergo preparatory conditioning. Similarly, we suggest that aluminum displacement and depletion from the solution upon electrolyte resting (along with continuous MgCl$_2$ regeneration) represents one of the causes of electrolyte aging. Finally, we compute the NMR shifts from shielding tensors of selected molecules and ions providing fingerprints to guide future experimental investigations.
Graphyne, a single atomic layer structure of the carbon six-member rings connected by one acetilenic linkage, is a promising anode of rechargeable batteries. In this paper, a first-principle study has been carried out on graphyne as a new candidate f
Re-entrant melting (in which a substances melting point starts to decrease beyond a certain pressure) is believed to be an unusual phenomenon. Among the elements, it has so far only been observed in a very limited number of species, e.g., the alkali
Rocky planets are thought to comprise compounds of Mg and O as these are among the most abundant elements, but knowledge of their stable phases may be incomplete. MgO is known to be remarkably stable to very high pressure and chemically inert under r
Being a lithophile element at ambient pressure, magnesium is long believed to be immiscible with iron. A recent study by Gao et al. [1] showed that pressure turns magnesium into a siderophile element and can produce unconventional Fe-Mg compounds. He
Dimethylammonium magnesium formate, [(CH$_3$)$_2$NH$_2$][Mg(HCOO)$_3$] or DMAMgF, is a model to study high temperature hybrid perovskite-like dielectrics. This compound displays a phase transition from para to ferroelectric at about 260~K. Using mult