ﻻ يوجد ملخص باللغة العربية
Conditional preparation is a well-established technique for quantum state engineering of light. A general trend is to increase the number of heralding detection events in such realization to reach larger photon-number states or their arbitrary superpositions. In contrast to pulsed implementations, where detections only occur within the pulse window, for continuous-wave light the temporal separation of the conditioning detections is an additional degree of freedom and a critical parameter. Based on the theoretical study by A.E.B. Nielsen and K. Molmer and on a continuous-wave two-mode squeezed vacuum from a nondegenerate optical parametric oscillator, we experimentally investigate the generation of two-photon state with tunable delay between the heralding events. The present work illustrates the temporal multimode features in play for conditional state generation based on continuous-wave light sources.
We present a scheme to conditionally engineer an optical quantum system via continuous-variable measurements. This scheme yields high-fidelity squeezed single photon and superposition of coherent states, from input single and two photon Fock states r
Amplified spontaneous emission is a common noise source in active optical systems, it is generally seen as being an incoherent process. Here we excite an ensemble of rare earth ion dopants in a solid with a {pi}-pulse, resulting in amplified spontane
Nowadays, quantum simulation schemes come in two flavours. Either they are continuous-time discrete-space models (a.k.a Hamiltonian-based), pertaining to non-relativistic quantum mechanics. Or they are discrete-spacetime models (a.k.a Quantum Walks o
The capability to generate and manipulate quantum states in high-dimensional Hilbert spaces is a crucial step for the development of quantum technologies, from quantum communication to quantum computation. One-dimensional quantum walk dynamics repres
We show an optical wave-mixing scheme that generates quantum light by means of a single three-level atom. The atom couples to an optical cavity and two laser fields that together drive a cycling current within the atom. Weak driving in combination wi