ﻻ يوجد ملخص باللغة العربية
We discuss the approximate inclusion of three-nucleon interactions into ab initio nuclear structure calculations using a multi-reference formulation of normal ordering and Wicks theorem. Following the successful application of single-reference normal ordering for the study of ground states of closed-shell nuclei, e.g., in coupled-cluster theory, multi-reference normal ordering opens a path to open-shell nuclei and excited states. Based on different multi-determinantal reference states we benchmark the truncation of the normal-ordered Hamiltonian at the two-body level in no-core shell-model calculations for p-shell nuclei, including 6-Li, 12-C, and 10-B. We find that this multi-reference normal-ordered two-body approximation is able to capture the effects of the 3N interaction with sufficient accuracy, both, for ground-state and excitation energies, at the computational cost of a two-body Hamiltonian. It is robust with respect to the choice of reference states and has a multitude of applications in ab initio nuclear structure calculations of open-shell nuclei and their excitations as well as in nuclear reaction studies.
We extend the ab initio coupled-cluster effective interaction (CCEI) method to deformed open-shell nuclei with protons and neutrons in the valence space, and compute binding energies and excited states of isotopes of neon and magnesium. We employ a n
We introduce a hybrid many-body approach that combines the flexibility of the No-Core Shell Model (NCSM) with the efficiency of Multi-Configurational Perturbation Theory (MCPT) to compute ground- and excited-state energies in arbitrary open-shell nuc
We present an approach to derive effective shell-model interactions from microscopic nuclear forces. The similarity-transformed coupled-cluster Hamiltonian decouples the single-reference state of a closed-shell nucleus and provides us with a core for
Generalized seniority provides a truncation scheme for the nuclear shell model, based on pairing correlations, which offers the possibility of dramatically reducing the dimensionality of the nuclear shell-model problem. Systematic comparisons against
The physics of radioactive ion beams implies the description of weakly-bound nuclear systems. One key aspect concerns the coupling to low-lying collective-type excited states, which for these systems might not be stable levels, but particle emitting