ﻻ يوجد ملخص باللغة العربية
Topological classification in our previous paper [K. Shiozaki and M. Sato, Phys. Rev. B ${bf 90}$, 165114 (2014)] is extended to nonsymmorphic crystalline insulators and superconductors. Using the twisted equivariant $K$-theory, we complete the classification of topological crystalline insulators and superconductors in the presence of additional order-two nonsymmorphic space group symmetries. The order-two nonsymmorphic space groups include half lattice translation with $Z_2$ flip, glide, two-fold screw, and their magnetic space groups. We find that the topological periodic table shows modulo-2 periodicity in the number of flipped coordinates under the order-two nonsymmorphic space group. It is pointed out that the nonsymmorphic space groups allow $mathbb{Z}_2$ topological phases even in the absence of time-reversal and/or particle-hole symmetries. Furthermore, the coexistence of the nonsymmorphic space group with the time-reversal and/or particle-hole symmetries provides novel $mathbb{Z}_4$ topological phases, which have not been realized in ordinary topological insulators and superconductors. We present model Hamiltonians of these new topological phases and the analytic expression of the $mathbb{Z}_2$ and $mathbb{Z}_4$ topological invariants. The half lattice translation with $Z_2$ spin flip and glide symmetry are compatible with the existence of the boundary, leading to topological surface gapless modes protected by such order-two nonsymmorphic symmetries. We also discuss unique features of these gapless surface modes.
It has been known that an anti-unitary symmetry such as time-reversal or charge conjugation is needed to realize Z2 topological phases in non-interacting systems. Topological insulators and superconducting nanowires are representative examples of suc
Recent works have proved the existence of symmetry-protected edge states in certain one-dimensional topological band insulators and superconductors at the gap-closing points which define quantum phase transitions between two topologically nontrivial
We identify four types of higher-order topological semimetals or nodal superconductors (HOTS), hosting (i) flat zero-energy Fermi arcs at crystal hinges, (ii) flat zero-energy hinge arcs coexisting with surface Dirac cones, (iii) chiral or helical hi
We present the exhaustive classification of surface states of topological insulators and superconductors protected by crystallographic magnetic point group symmetry in three spatial dimensions. Recently, Cornfeld and Chapman [Phys. Rev. B {bf 99}, 07
Second-order topological insulators and superconductors have a gapped excitation spectrum in bulk and along boundaries, but protected zero modes at corners of a two-dimensional crystal or protected gapless modes at hinges of a three-dimensional cryst