ﻻ يوجد ملخص باللغة العربية
The structure of Fenna-Matthews-Olson (FMO) light-harvesting complex has long been recognized as containing seven bacteriochlorophyll (BChl) molecules. Recently, an additional BChl molecule was discovered in the crystal structure of the FMO complex, which may serve as a link between baseplate and the remaining seven molecules. Here, we investigate excitation energy transfer (EET) process by simulating single-molecule pump-dump experiment in the eight-molecules complex. We adopt the coherent modified Redfield theory and non-Markovian quantum jump method to simulate EET dynamics. This scheme provides a practical approach of detecting the realistic EET pathway in BChl complexes with currently available experimental technology. And it may assist optimizing design of artificial light-harvesting devices.
Motivated by recent experiments on photon statistics from individual dye pairs planted on biomolecules and coupled by fluorescence resonance energy transfer (FRET), we show here that the FRET dynamics can be modelled by Gaussian random processes with
Homodyne X-ray diffraction signals produced by classical light and classical detectors are given by the modulus square of the charge density in momentum space $left|sigma(mathbf{q})right|^{2}$, missing its phase which is required in order to invert t
Glycans play a central role as mediators in most biological processes, but their structures are complicated by isomerism. Epimers and anomers, regioisomers, and branched sequences contribute to a structural variability that dwarfs those of nucleic ac
Anisotropy is a fundamental property of particle interactions. It occupies a central role in cold and ultra-cold molecular processes, where long range forces have been found to significantly depend on orientation in ultra-cold polar molecule collisio
We derive approximate equations of motion for excited state dynamics of a multilevel open quantum system weakly interacting with light to describe fluorescence detected single molecule spectra. Based on the Frenkel exciton theory, we construct a mode