ﻻ يوجد ملخص باللغة العربية
We present a probabilistic version of PCF, a well-known simply typed universal functional language. The type hierarchy is based on a single ground type of natural numbers. Even if the language is globally call-by-name, we allow a call-by-value evaluation for ground type arguments in order to provide the language with a suitable algorithmic expressiveness. We describe a denotational semantics based on probabilistic coherence spaces, a model of classical Linear Logic developed in previous works. We prove an adequacy and an equational full abstraction theorem showing that equality in the model coincides with a natural notion of observational equivalence.
In previous work with Pous, we defined a semantics for CCS which may both be viewed as an innocent presheaf semantics and as a concurrent game semantics. It is here proved that a behavioural equivalence induced by this semantics on CCS processes is f
In previous work with Pous, we defined a semantics for CCS which may both be viewed as an innocent form of presheaf semantics and as a concurrent form of game semantics. We define in this setting an analogue of fair testing equivalence, which we prov
Partially Observable Markov Decision Process (POMDP) is widely used to model probabilistic behavior for complex systems. Compared with MDPs, POMDP models a system more accurate but solving a POMDP generally takes exponential time in the size of its s
Abstraction is a well-known approach to simplify a complex problem by over-approximating it with a deliberate loss of information. It was not considered so far in Answer Set Programming (ASP), a convenient tool for problem solving. We introduce a met
Relational verification is a technique that aims at proving properties that relate two different program fragments, or two different program runs. It has been shown that constrained Horn clauses (CHCs) can effectively be used for relational verificat