ترغب بنشر مسار تعليمي؟ اضغط هنا

Higgs boson production and decay in 5D warped models

58   0   0.0 ( 0 )
 نشر من قبل Nima Pourtolami
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We calculate the production and decay rates of the Higgs boson at the LHC in the context of general 5 dimensional (5D) warped scenarios with a spacetime background modified from the usual $AdS_5$, with SM fields propagating in the bulk. We extend previous work by considering the full flavor structure of the SM, and thus including all possible flavor effects coming from mixings with heavy fermions. We proceed in three different ways, first by only including two complete Kaluza-Klein (KK) levels ($15times15$ fermion mass matrices), then including three complete KK levels ($21times21$ fermion mass matrices) and finally we compare with the effect of including the infinite (full) KK towers. We present numerical results for the Higgs production cross section via gluon fusion and Higgs decay branching fractions in both the modified metric scenario and in the usual Randall-Sundrum metric scenario.



قيم البحث

اقرأ أيضاً

We calculate the production rate of the Higgs boson at the LHC in the context of general 5 dimensional (5D) warped scenarios with spacetime background modified from the usual $AdS_5$, and where all the SM fields, including the Higgs, propagate in the bulk. This modification can alleviate considerably the bounds coming from precision electroweak tests and flavor physics. We evaluate the Higgs production rate and show that it is generically consistent with the current experimental results from the LHC for Kaluza-Klein (KK) masses as low as 2 TeV, unlike in pure $AdS_5$ scenarios, where for the same masses, the Higgs production typically receives corrections too large to be consistent with LHC data. Thus the new pressure on warped models arising from LHC Higgs data is also alleviated in $AdS_5$-modified warped scenarios.
161 - Marcela Carena 2012
Measurements of the Higgs-boson production cross section at the LHC are an important tool for studying electroweak symmetry breaking at the quantum level, since the main production mechanism gg-->h is loop-suppressed in the Standard Model (SM). Higgs production in extra-dimensional extensions of the SM is sensitive to the Kaluza-Klein (KK) excitations of the quarks, which can be exchanged as virtual particles in the loop. In the context of the minimal Randall-Sundrum (RS) model with bulk fields and a brane-localized Higgs sector, we derive closed analytical expressions for the gluon-gluon fusion process, finding that the effect of the infinite tower of virtual KK states can be described in terms of a simple function of the fundamental (5D) Yukawa matrices. Given a specific RS model, this will allow one to easily constrain the parameter space, once a Higgs signal has been established. We explain that discrepancies between existing calculations of Higgs production in RS models are related to the non-commutativity of two limits: taking the number of KK states to infinity and removing the regulator on the Higgs-boson profile, which is required in an intermediate step to make the relevant overlap integrals well defined. Even though the one-loop gg-->h amplitude is finite in RS scenarios with a brane-localized Higgs sector, it is important to introduce a consistent ultraviolet regulator in order to obtain the correct result.
In the context of a simple five-dimensional (5D) model with bulk matter coupled to a brane-localized Higgs boson, we point out a new non-commutativity in the 4D calculation of the mass spectrum for excited fermion towers: the obtained expression depe nds on the choice in ordering the limits, N->infinity (infinite Kaluza-Klein tower) and epsilon->0 (epsilon being the parameter introduced for regularizing the Higgs Dirac peak). This introduces the physical question of which one is the correct order; we then show that the two possible orders of regularization (called I and II) are physically equivalent, as both can typically reproduce the measured observables, but that the one with less degrees of freedom (I) could be uniquely excluded by future experimental constraints. This conclusion is based on the exact matching between the 4D and 5D analytical calculations of the mass spectrum - via the regularizations of type I and II. Beyond a deeper insight into the Higgs peak regularizations, this matching also allows us to confirm the validity of the usual 5D mixed-formalism and to clarify the UV cut-off procedure. All the conclusions, deduced from regularizing the Higgs peak through a brane shift or a smoothed square profile, are expected to remain similar in realistic models with a warped extra-dimension.
The radion scalar field might be the lightest new particle predicted by extra-dimensional extensions of the Standard Model. It could thus lead to the first signatures of new physics at the LHC collider. We perform a complete study of the radion produ ction in association with the Z gauge boson in the custodially protected warped model with a brane-localised Higgs boson addressing the gauge hierarchy problem. Radion-Higgs mixing effects are present. Such a radion production receives possibly resonant contributions from the Kaluza-Klein excitations of the Z boson as well as the extra neutral gauge boson (Z). All the exchange and mixing effects induced by those heavy bosons are taken into account in the radion coupling and rate calculations. The investigation of the considered radion production at LHC allows to be sensitive to some parts of the parameter space but only the ILC program at high luminosity would cover most of the theoretically allowed parameter space via the studied reaction. Complementary tests of the same theoretical parameters can be realised through the high accuracy measurements of the Higgs couplings at ILC. The generic sensitivity limits on the rates discussed for the LHC and ILC potential reach can be applied to the searches for other (light) exotic scalar bosons.
A comprehensive, five-dimensional calculation of Higgs-boson production in gluon fusion is performed for both the minimal and the custodially protected Randall-Sundrum (RS) model, with Standard Model fields propagating in the bulk and the scalar sect or confined on or near the IR brane. For the first time, an exact expression for the gg->h amplitude in terms of the five-dimensional fermion propagator is derived, which includes the full dependence on the Higgs-boson mass. Various results in the literature are reconciled and shown to correspond to different incarnations of the RS model, in which the Higgs field is either localized on the IR brane or is described in terms of a narrow bulk state. The results in the two scenarios differ in a qualitative way: the gg->h amplitude is suppressed in models where the scalar sector is localized on the IR brane, while it tends to be enhanced in bulk Higgs models. In both cases, effects of higher-dimensional operators contributing to the gg->h amplitude at tree level are shown to be numerically suppressed under reasonable assumptions. There is no smooth cross-over between the two scenarios, since the effective field-theory description breaks down in the transition region. A detailed phenomenological analysis of Higgs production in various RS scenarios is presented, and for each scenario the regions of parameter space already excluded by LHC data are derived.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا