ترغب بنشر مسار تعليمي؟ اضغط هنا

Evolution of temporal coherence in confined polariton condensates

63   0   0.0 ( 0 )
 نشر من قبل Christian Schneider
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the influence of spatial confinement on the second-order temporal coherence of the emission from a semiconductor microcavity in the strong coupling regime. The confinement, provided by etched micropillars, has a favorable impact on the temporal coherence of solid state quasi-condensates that evolve in our device above threshold. By fitting the experimental data with a microscopic quantum theory based on a quantum jump approach, we scrutinize the influence of pump power and confinement and find that phonon-mediated transitions are enhanced in the case of a confined structure, in which the modes split into a discrete set. By increasing the pump power beyond the condensation threshold, temporal coherence significantly improves in devices with increased spatial confinement, as revealed in the transition from thermal to coherent statistics of the emitted light.



قيم البحث

اقرأ أيضاً

Coherent bosonic ensembles offer the promise of harnessing quantum effects in photonic and quantum circuits. In the dynamic equilibrium regime, the application of polariton condensates is hindered by exciton-polariton scattering induced de-coherence in the presence of a dark exciton reservoir. By spatially separating the condensate from the reservoir, we drive the system into the weak interaction regime, where the ensemble coherence time exceeds the individual particle lifetime by nearly three orders of magnitude. The observed nanosecond coherence provides an upper limit for polariton self-interactions. In contrast to conventional photon lasers, we observe an increased contribution from the super-Poissonian component of the condensate to the overall particle number fluctuations. Coupled with the recent emergence of a quantum regime in polaritonics, coherence times extended to several nanoseconds favour the realization of quantum information protocols.
We investigate an optically trapped exciton-polariton condensate and observe temporal coherence beyond 1~ns duration. Due to the reduction of the spatial overlap with the thermal reservoir of excitons, the coherence time of the trapped condensate is more than an order of magnitude longer than that of an untrapped condensate. This ultralong coherence enables high precision spectroscopy of the trapped condensate, and we observe periodic beats of the field correlation function due to a fine energy splitting of two polarization modes of the condensate. Our results are important for realizing polariton simulators with spinor condensates in lattice potentials.
The strong light-matter coupling of a microcavity mode to tightly bound Frenkel excitons in organic materials emerged as a versatile, room-temperature compatible platform to study nonlinear many-particle physics and bosonic condensation. However, var ious aspects of the optical response of Frenkel excitons in this regime remained largely unexplored. Here, we utilize a hemispheric optical cavity filled with the fluorescent protein mCherry to address two important questions in the field of room-temperature polariton condensates. First, combining the high quality factor of the microcavity with a well-defined mode structure allows us to provide a definite answer whether temporal coherence in such systems can become competitive with their low-temperature counterparts. We observe highly monochromatic and coherent light beams emitted from the condensate, characterized by a coherence time greater than 150$,$ps, which exceeds the polariton lifetime by two orders of magnitude. Second, the high quality of our device allows to sensibly trace the emission energy of the condensate, and thus to establish a fundamental picture which quantitatively explains the core nonlinear processes yielding the characteristic density-dependent blueshift. We find that the energy shift of Frenkel exciton-polaritons is largely dominated by the reduction of the Rabi-splitting due to phase space filling effects, which is influenced by the redistribution of polaritons in the system. While our finding of highly coherent condensation at ambient conditions addresses the suitability of organic polaritonics regarding their utilization as highly coherent room temperature polariton lasers, shedding light on the non-linearity is of great benefit towards implementing non-linear devices, optical switches, and lattices based on exciton-polaritons at room temperature.
Recently a new type of system exhibiting spontaneous coherence has emerged -- the exciton-polariton condensate. Exciton-polaritons (or polaritons for short) are bosonic quasiparticles that exist inside semiconductor microcavities, consisting of a sup erposition of an exciton and a cavity photon. Above a threshold density the polaritons macroscopically occupy the same quantum state, forming a condensate. The lifetime of the polaritons are typically comparable to or shorter than thermalization times, making them possess an inherently non-equilibrium nature. Nevertheless, they display many of the features that would be expected of equilibrium Bose-Einstein condensates (BECs). The non-equilibrium nature of the system raises fundamental questions of what it means for a system to be a BEC, and introduces new physics beyond that seen in other macroscopically coherent systems. In this review we focus upon several physical phenomena exhibited by exciton-polariton condensates. In particular we examine topics such as the difference between a polariton BEC, a polariton laser, and a photon laser, as well as physical phenomena such as superfluidity, vortex formation, BKT (Berezinskii-Kosterlitz-Thouless) and BCS (Bardeen-Cooper-Schrieffer) physics. We also discuss the physics and applications of engineered polariton structures.
We introduce the phenomenon of spiraling vortices in driven-dissipative (non-equilibrium) exciton-polariton condensates excited by a non-resonant pump beam. At suitable low pump intensities, these vortices are shown to spiral along circular trajector ies whose diameter is inversely proportional to the effective mass of the polaritons, while the rotation period is mass independent. Both diameter and rotation period are inversely proportional to the pump intensity. Stable spiraling patterns in the form of complexes of multiple mutually-interacting vortices are also found. At elevated pump intensities, which create a stronger homogeneous background, we observe more complex vortex trajectories resembling Spirograph patterns.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا