ترغب بنشر مسار تعليمي؟ اضغط هنا

Mixed stochastic differential equations: Existence and uniqueness result

149   0   0.0 ( 0 )
 نشر من قبل El Hassan Essaky
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we shall establish an existence and uniqueness result for solutions of multidimensional, time dependent, stochastic differential equations driven simultaneously by a multidimensional fractional Brownian motion with Hurst parameter $H > frac{1}{2} and a multidimensional standard Brownian motion under a weaker condition than the Lipschitz one.



قيم البحث

اقرأ أيضاً

We provide existence, uniqueness and stability results for affine stochastic Volterra equations with $L^1$-kernels and jumps. Such equations arise as scaling limits of branching processes in population genetics and self-exciting Hawkes processes in m athematical finance. The strategy we adopt for the existence part is based on approximations using stochastic Volterra equations with $L^2$-kernels combined with a general stability result. Most importantly, we establish weak uniqueness using a duality argument on the Fourier--Laplace transform via a deterministic Riccati--Volterra integral equation. We illustrate the applicability of our results on Hawkes processes and a class of hyper-rough Volterra Heston models with a Hurst index $H in (-1/2,1/2]$.
We consider a class of semilinear Volterra type stochastic evolution equation driven by multiplicative Gaussian noise. The memory kernel, not necessarily analytic, is such that the deterministic linear equation exhibits a parabolic character. Under a ppropriate Lipschitz-type and linear growth assumptions on the nonlinear terms we show that the unique mild solution is mean-$p$ Holder continuous with values in an appropriate Sobolev space depending on the kernel and the data. In particular, we obtain pathwise space-time (Sobolev-Holder) regularity of the solution together with a maximal type bound on the spatial Sobolev norm. As one of the main technical tools we establish a smoothing property of the derivative of the deterministic evolution operator family.
This paper is devoted to a general solvability of a multi-dimensional backward stochastic differential equation (BSDE) of a diagonally quadratic generator $g(t,y,z)$, by relaxing the assumptions of citet{HuTang2016SPA} on the generator and terminal v alue. More precisely, the generator $g(t,y,z)$ can have more general growth and continuity in $y$ in the local solution; while in the global solution, the generator $g(t,y,z)$ can have a skew sub-quadratic but in addition strictly and diagonally quadratic growth in the second unknown variable $z$, or the terminal value can be unbounded but the generator $g(t,y,z)$ is diagonally dependent on the second unknown variable $z$ (i.e., the $i$-th component $g^i$ of the generator $g$ only depends on the $i$-th row $z^i$ of the variable $z$ for each $i=1,cdots,n$ ). Three new results are established on the local and global solutions when the terminal value is bounded and the generator $g$ is subject to some general assumptions. When the terminal value is unbounded but is of exponential moments of arbitrary order, an existence and uniqueness result is given under the assumptions that the generator $g(t,y,z)$ is Lipschitz continuous in the first unknown variable $y$, and varies with the second unknown variable $z$ in a diagonal , component-wisely convex or concave, and quadratically growing way, which seems to be the first general solvability of systems of quadratic BSDEs with unbounded terminal values. This generalizes and strengthens some existing results via some new ideas.
The BMO martingale theory is extensively used to study nonlinear multi-dimensional stochastic equations (SEs) in $cR^p$ ($pin [1, infty)$) and backward stochastic differential equations (BSDEs) in $cR^ptimes cH^p$ ($pin (1, infty)$) and in $cR^inftyt imes bar{cH^infty}^{BMO}$, with the coefficients being allowed to be unbounded. In particular, the probabilistic version of Feffermans inequality plays a crucial role in the development of our theory, which seems to be new. Several new results are consequently obtained. The particular multi-dimensional linear case for SDEs and BSDEs are separately investigated, and the existence and uniqueness of a solution is connected to the property that the elementary solutions-matrix for the associated homogeneous SDE satisfies the reverse Holder inequality for some suitable exponent $pge 1$. Finally, we establish some relations between Kazamakis quadratic critical exponent $b(M)$ of a BMO martingale $M$ and the spectral radius of the solution operator for the $M$-driven SDE, which lead to a characterization of Kazamakis quadratic critical exponent of BMO martingales being infinite.
We consider a stochastic partial differential equation (SPDE) which describes the velocity field of a viscous, incompressible non-Newtonian fluid subject to a random force. Here the extra stress tensor of the fluid is given by a polynomial of degree $p-1$ of the rate of strain tensor, while the colored noise is considered as a random force. We investigate the existence and the uniqueness of weak solutions to this SPDE.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا