ﻻ يوجد ملخص باللغة العربية
A key ingredient in the Taylor-Wiles proof of Fermat last theorem is the classical Iharas lemma which is used to rise the modularity property between some congruent galoisian representations. In their work on Sato-Tate, Clozel-Harris-Taylor proposed a generalization of the Iharas lemma in higher dimension for some similitude groups. The main aim of this paper is then to prove some new instances of this generalized Iharas lemma by considering some particular non pseudo Eisenstein maximal ideals of unramified Hecke algebras. As a consequence, we prove a level rising statement.
We exhibit cases of a level fixing phenomenon for galoisian automorphic representations of a CM field $F$, with dimension $d geq 2$. The proof rests on the freeness of the localized cohomology groups of KHT Shimura varieties and the strictness of its
Persitence of non degeneracy is a phenomenon which appears in the theory of $overline{mathbb Q}_l$-representations of the linear group: every irreducible submodule of the restriction to the mirabolic subgroup of an non degenerate irreducible represen
Using $l$-adic completed cohomology in the context of Shimura varieties of Kottwitz-Harris-Taylor type attached to some fixed similitude group $G$, we prove, allowing to increase the levet at $l$, some new automorphic congruences between any degenera
In this paper we prove the Hausdorff dimension of the set of (nondegenerate) singular two-dimensional vectors with uniform exponent $mu$ $in$ (1/2, 1) is 2(1 -- $mu$) when $mu$ $ge$ $sqrt$ 2/2, whereas for $mu$ textless{} $sqrt$ 2/2 it is greater tha
In [14], the authors developed a new approach to the computation of the Hausdorff dimension of the invariant set of an iterated function system or IFS. In this paper, we extend this approach to incorporate high order approximation methods. We again r