ترغب بنشر مسار تعليمي؟ اضغط هنا

Rotation periods and seismic ages of KOIs - comparison with stars without detected planets from Kepler observations

123   0   0.0 ( 0 )
 نشر من قبل Rafael A. Garcia
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

One of the most difficult properties to derive for stars is their age. For cool main-sequence stars, gyrochronology relations can be used to infer stellar ages from measured rotation pe- riods and HR Diagram positions. These relations have few calibrators with known ages for old, long rotation period stars. There is a significant sample of old Kepler objects of inter- est, or KOIs, which have both measurable surface rotation periods and precise asteroseismic measurements from which ages can be accurately derived. In this work we determine the age and the rotation period of solar-like pulsating KOIs to both compare the rotation properties of stars with and without known planets and enlarge the gyrochronology calibration sample for old stars. We use Kepler photometric light curves to derive the stellar surface rotation peri- ods while ages are obtained with asteroseismology using the Asteroseismic Modeling Portal in which individual mode frequencies are combined with high-resolution spectroscopic pa- rameters. We thus determine surface rotation periods and ages for 11 planet-hosting stars, all over 2 Gyr old. We find that the planet-hosting stars exhibit a rotational behaviour that is consistent with the latest age-rotation models and similar to the rotational behaviour of stars without detected planets. We conclude that these old KOIs can be used to test and calibrate gyrochronology along with stars not known to host planets.



قيم البحث

اقرأ أيضاً

We report rotation periods, variability characteristics, gyrochronological ages for ~950 of the Kepler Object of Interest host stars. We find a wide dispersion in the amplitude of the photometric variability as a function of rotation, likely indicati ng differences in the spot distribution among stars. We use these rotation periods in combination with published spectroscopic measurements of vsini and stellar parameters to derive the stellar inclination in the line-of-sight, and find a number of systems with possible spin-orbit misalignment. We additionally find several systems with close-in planet candidates whose stellar rotation periods are equal to or twice the planetary orbital period, indicative of possible tidal interactions between these planets and their parent stars. If these systems survive validation to become confirmed planets, they will provide important clues to the evolutionary history of these systems.
Aims: We aim to measure the starspot rotation periods of active stars in the Kepler field as a function of spectral type and to extend reliable rotation measurements from F-, G-, and K-type to M-type stars. Methods: Using the Lomb-Scargle periodogr am we searched more than 150 000 stellar light curves for periodic brightness variations. We analyzed periods between 1 and 30 days in eight consecutive Kepler quarters, where 30 days is an estimated maximum for the validity of the PDC_MAP data correction pipeline. We selected stable rotation periods, i.e., periods that do not vary from the median by more than one day in at least six of the eight quarters. We averaged the periods for each stellar spectral class according to B - V color and compared the results to archival vsini data, using stellar radii estimates from the Kepler Input Catalog. Results: We report on the stable starspot rotation periods of 12 151 Kepler stars. We find good agreement between starspot velocities and vsini data for all F-, G- and early K-type stars. The 795 M-type stars in our sample have a median rotation period of 15.4 days. We find an excess of M-type stars with periods less than 7.5 days that are potentially fast-rotating and fully convective. Measuring photometric variability in multiple Kepler quarters appears to be a straightforward and reliable way to determine the rotation periods of a large sample of active stars, including late-type stars.
We measure rotation periods for 12151 stars in the Kepler field, based on the photometric variability caused by stellar activity. Our analysis returns stable rotation periods over at least six out of eight quarters of Kepler data. This large sample o f stars enables us to study the rotation periods as a function of spectral type. We find good agreement with previous studies and vsini measurements for F, G and K stars. Combining rotation periods, B-V color, and gyrochronology relations, we find that the cool stars in our sample are predominantly younger than ~1Gyr.
Lithium abundance A(Li) and surface rotation are good diagnostic tools to probe the internal mixing and angular momentum transfer in stars. We explore the relation between surface rotation, A(Li) and age in a sample of seismic solar-analogue (SA) sta rs and study their possible binary nature. We select a sample of 18 SA observed by the NASA Kepler satellite for an in-depth analysis. Their seismic properties and surface rotation are well constrained from previous studies. About 53 hours of high-resolution spectroscopy were obtained to derive fundamental parameters and A(Li). These values were combined and confronted with seismic masses, radii and ages, as well as surface rotation periods. We identify a total of 6 binary systems. A well-defined relation between A(Li) and rotation was obtained. With models constrained by the characterisation of the individual mode frequencies for single stars, we identify a sequence of three SA with similar mass (~1.1Mo) and stellar ages ranging between 1 to 9 Gyr. Within the realistic estimate of ~7% for the mass uncertainty, we find a good agreement between the measured A(Li) and the predicted A(Li) evolution from a grid of models calculated with the Toulouse-Geneva stellar evolution code, which includes rotational internal mixing, calibrated to reproduce solar chemical properties. We present A(Li) for a consistent spectroscopic survey of SA with a mass of 1.00+/-0.15Mo, and characterised through asteroseismology and surface rotation rates based on Kepler observations. The correlation between A(Li) and P_rot supports the gyrochronological concept for stars younger than the Sun. The consensus between measured A(Li) for solar analogues with model grids, calibrated onto the Suns chemical properties suggests that these targets share the same internal physics. In this light, the solar Li and rotation rate appear to be normal for a star like the Sun.
In this work we examine M dwarf rotation rates at a range of ages to establish benchmarks for Mdwarf gyrochronology. This work includes a sample of 713 spectroscopically-classified M0-M8 dwarfs with new rotation rates measured from K2 light curves. W e analyzed data and recover rotation rates for 179 of these objects. We add these to rotation rates for members of clusters with known ages (5-700 Myr), as well as objects assumed to have field ages ($>$1 Gyr). We use Gaia DR2 parallax and (G-GRP) photometry to create color-magnitude diagrams to compare objects across samples. We use color-period plots to analyze the period distributions across age, as well as incorporate Halpha equivalent width and tangential velocity where possible to further comment on age dependence. We find that the age of transition from rapid to slow rotation in clusters, which we define as an elbow in the period-color plots, depends on spectral type. Later spectral types transition at older ages: M4 for Praesepe at 700 Myr, one of the oldest clusters for which M dwarf rotation rates have been measured. The transition from active to inactive Halpha equivalent width also occurs at this elbow, as objects transition from rapid rotation to the slowly rotating sequence. Redder or smaller stars remain active at older ages. Finally, using Gaia kinematics we find evidence for rotation stalling for late Ms in the field sample, suggesting the transition happens much later for mid to late-type M dwarfs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا