ﻻ يوجد ملخص باللغة العربية
This is an overview of our series of papers on the modular generalized Springer correspondence. It is an expansion of a lecture given by the second author in the Fifth Conference of the Tsinghua Sanya International Mathematics Forum, Sanya, December 2014, as part of the Master Lecture `Algebraic Groups and their Representations Workshop honouring G. Lusztig. The material that has not appeared in print before includes some discussion of the motivating idea of modular character sheaves, and heuristic remarks about geometric functors of parabolic induction and restriction.
We construct a modular generalized Springer correspondence for any classical group, by generalizing to the modular setting various results of Lusztig in the case of characteristic-$0$ coefficients. We determine the cuspidal pairs in all classical typ
We define the notion of basic set data for finite groups (building on the notion of basic set, but including an order on the irreducible characters as part of the structure), and we prove that the Springer correspondence provides basic set data for W
The Springer correspondence makes a link between the characters of a Weyl group and the geometry of the nilpotent cone of the corresponding semisimple Lie algebra. In this article, we consider a modular version of the theory, and show that the decomp
Let H be any reductive p-adic group. We introduce a notion of cuspidality for enhanced Langlands parameters for H, which conjecturally puts supercuspidal H-representations in bijection with such L-parameters. We also define a cuspidal support map and
In this paper we establish Springer correspondence for the symmetric pair $(mathrm{SL}(N),mathrm{SO}(N))$ using Fourier transform, parabolic induction functor, and a nearby cycle sheaves construction due to Grinberg. As applications, we obtain result