ترغب بنشر مسار تعليمي؟ اضغط هنا

A Hubble Space Telescope Study of the Enigmatic Milky Way Halo Globular Cluster Crater

74   0   0.0 ( 0 )
 نشر من قبل Daniel Weisz
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze the resolved stellar populations of the faint stellar system, Crater, based on deep optical imaging taken with the Hubble Space Telescope. The HST/ACS-based color-magnitude diagram (CMD) of Crater extends $sim$4 magnitudes below the oldest main sequence turnoff, providing excellent leverage on Craters physical properties. Structurally, Crater has a half-light radius of $sim$20 pc and shows no evidence for tidal distortions. Crater is well-described by a simple stellar population with an age of $sim$7.5 Gyr, [M/H]$sim-1.65$, a M$_{star}sim10^4$ M$_{odot}$, M$_{rm V}sim -5.3$, located at a distance of d$sim$ 145 kpc, with modest uncertainties in these properties due to differences in the underlying stellar evolution models. The sparse sampling of stars above the turnoff and sub-giant branch are likely to be 1.0-1.4 M$_{odot}$ binary star systems (blue stragglers) and their evolved descendants, as opposed to intermediate age main sequence stars. Confusion of these populations highlights a substantial challenge in accurately characterizing sparsely populated stellar systems. Our analysis shows that Crater is not a dwarf galaxy, but instead is an unusually young cluster given its location in the Milky Ways very outer stellar halo. Crater is similar to SMC cluster Lindsay 38, and its position and velocity are in good agreement with observations and models of the Magellanic stream debris, suggesting it may have accreted from the Magellanic Clouds. However, its age and metallicity are also in agreement with the age-metallicity relationships of lower mass dwarf galaxies such as Leo I or Carina. Despite uncertainty over its progenitor system, Crater appears to have been incorporated into the Galaxy more recently than $zsim1$ (8 Gyr ago), providing an important new constraint on the accretion history of the Milky Way. [abridged]



قيم البحث

اقرأ أيضاً

99 - G. C. Myeong 2018
We analyse the structure of the local stellar halo of the Milky Way using $sim$ 60000 stars with full phase space coordinates extracted from the SDSS--{it Gaia} catalogue. We display stars in action space as a function of metallicity in a realistic a xisymmetric potential for the Milky Way Galaxy. The metal-rich population is more distended towards high radial action $J_R$ as compared to azimuthal or vertical action, $J_phi$ or $J_z$. It has a mild prograde rotation $(langle v_phi rangle approx 25$ km s$^{-1}$), is radially anisotropic and highly flattened with axis ratio $q approx 0.6 - 0.7$. The metal-poor population is more evenly distributed in all three actions. It has larger prograde rotation $(langle v_phi rangle approx 50$ km s$^{-1}$), a mild radial anisotropy and a roundish morphology ($qapprox 0.9$). We identify two further components of the halo in action space. There is a high energy, retrograde component that is only present in the metal-rich stars. This is suggestive of an origin in a retrograde encounter, possibly the one that created the stripped dwarf galaxy nucleus, $omega$Centauri. Also visible as a distinct entity in action space is a resonant component, which is flattened and prograde. It extends over a range of metallicities down to [Fe/H] $approx -3$. It has a net outward radial velocity $langle v_R rangle approx 12$ km s$^{-1}$ within the Solar circle at $|z| <3.5$ kpc. The existence of resonant stars at such extremely low metallicities has not been seen before.
228 - A.K.H. Kong , C. Bassa , D. Pooley 2006
We report on the Chandra X-ray Observatory observations of the globular cluster NGC 288. We detect four X-ray sources within the core radius and seven additional sources within the half-mass radius down to a limiting luminosity of Lx=7e30 erg/s (assu ming cluster membership) in the 0.3-7 keV band. We also observed the cluster with the Hubble Space Telescope Advanced Camera for Surveys and identify optical counterparts to seven X-ray sources out of the nine sources within the HST field-of-view. Based on the X-ray and optical properties, we find 2-5 candidates of cataclysmic variables (CVs) or chromospherically active binaries, and 2-5 background galaxies inside the half-mass radius. Since the core density of NGC 288 is very low, the faint X-ray sources of NGC 288 found in the Chandra and HST observations is higher than the prediction on the basis of the collision frequency. We suggest that the CVs and chromospherically active binaries are primordial in origin, in agreement with theoretical expectation.
130 - M. Hanke , A. Koch , C. J. Hansen 2016
We present our detailed spectroscopic analysis of the chemical composition of four red giant stars in the halo globular cluster NGC 6426. We obtained high-resolution spectra using the Magellan2/MIKE spectrograph, from which we derived equivalent widt hs and subsequently computed abundances of 24 species of 22 chemical elements. For the purpose of measuring equivalent widths, we developed a new semi-automated tool, called EWCODE. We report a mean Fe content of [Fe/H] = -2.34$pm$0.05 dex (stat.) in accordance with previous studies. At a mean $alpha$-abundance of [(Mg,Si,Ca)/3 Fe] = 0.39$pm$0.03 dex, NGC 6426 falls on the trend drawn by the Milky Way halo and other globular clusters at comparably low metallicities. The distribution of the lighter $alpha$-elements as well as the enhanced ratio [Zn/Fe] = 0.39 dex could originate from hypernova enrichment of the pre-cluster medium. We find tentative evidence for a spread in the elements Mg, Si, and Zn, indicating an enrichment scenario, where ejecta of evolved massive stars of a slightly older population polluted a newly born younger one. The heavy element abundances in this cluster fit well into the picture of metal-poor globular clusters, which in that respect appear to be remarkably homogeneous. The pattern of the neutron-capture elements heavier than Zn point towards an enrichment history governed by the r-process with only little -if any- sign of s-process contributions. This finding is supported by the striking similarity of our program stars to the metal-poor field star HD 108317.
We estimate the mass of the Milky Way (MW) within 21.1 kpc using the kinematics of halo globular clusters (GCs) determined by Gaia. The second Gaia data release (DR2) contained a catalogue of absolute proper motions (PMs) for a set of Galactic GCs an d satellite galaxies measured using Gaia DR2 data. We select from the catalogue only halo GCs, identifying a total of 34 GCs spanning $2.0 < r < 21.1$ kpc, and use their 3D kinematics to estimate the anisotropy over this range to be $beta = 0.46^{+0.15}_{-0.19}$, in good agreement, though slightly lower than, a recent estimate for a sample of halo GCs using HST PM measurements further out in the halo. We then use the Gaia kinematics to estimate the mass of the MW inside the outermost GC to be $M(< 21.1 mathrm{kpc}) = 0.21^{+0.04}_{-0.03} 10^{12} mathrm{M_odot}$, which corresponds to a circular velocity of $v_mathrm{circ}(21.1 mathrm{kpc}) = 206^{+19}_{-16}$ km/s. The implied virial mass is $M_mathrm{virial} = 1.28^{+0.97}_{-0.48} 10^{12} mathrm{M_odot}$. The error bars encompass the uncertainties on the anisotropy and on the density profile of the MW dark halo, and the scatter inherent in the mass estimator we use. We get improved estimates when we combine the Gaia and HST samples to provide kinematics for 46 GCs out to 39.5 kpc: $beta = 0.52^{+0.11}_{-0.14}$, $M(< 39.5 mathrm{kpc}) = 0.42^{+0.07}_{-0.06} 10^{12} mathrm{M_odot}$, and $M_mathrm{virial} = 1.54^{+0.75}_{-0.44} 10^{12} mathrm{M_odot}$. We show that these results are robust to potential substructure in the halo GC distribution. While a wide range of MW virial masses have been advocated in the literature, from below $10^{12} mathrm{M_odot}$ to above $2 times 10^{12}mathrm{M_odot}$, these new data imply that an intermediate mass is most likely.
We report on the discovery of a new Milky Way companion stellar system located at (RA, Dec) = (22h10m43.15s, +14:56:58.8). The discovery was made using the eighth data release of SDSS after applying an automated method to search for overdensities in the Baryon Oscillation Spectroscopic Survey footprint. Follow-up observations were performed using CFHT-MegaCam, which reveal that this system is comprised of an old stellar population, located at a distance of 31.9+1.0-1.6 kpc, with a half-light radius of r_h = 7.24+1.94-1.29 pc and a concentration parameter of c = 1.55. A systematic isochrone fit to its color-magnitude diagram resulted in log(age) = 10.07+0.05-0.03 and [Fe/H] = -1.58+0.08-0.13 . These quantities are typical of globular clusters in the MW halo. The newly found object is of low stellar mass, whose observed excess relative to the background is caused by 96 +/- 3 stars. The direct integration of its background decontaminated luminosity function leads to an absolute magnitude of MV = -1.21 +/- 0.66. The resulting surface brightness is uV = 25.9 mag/arcsec2 . Its position in the M_V vs. r_h diagram lies close to AM4 and Koposov 1, which are identified as star clusters. The object is most likely a very faint star cluster - one of the faintest and lowest mass systems yet identified.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا