ﻻ يوجد ملخص باللغة العربية
Motivated by the realization of hard-wall boundary conditions in experiments with ultracold atoms, we investigate the ground-state properties of spin-1/2 fermions with attractive interactions in a one-dimensional box. We use lattice Monte Carlo methods to determine essential quantities like the energy, which we compute as a function of coupling strength and particle number in the regime from few to many particles. Many-fermion systems bound by hard walls display non-trivial density profiles characterized by so-called Friedel oscillations (which are similar to those observed in harmonic traps). In non-interacting systems, the characteristic length scale of the oscillations is set by (2 kF)^(-1), where kF is the Fermi momentum, while repulsive interactions tend to generate Wigner-crystal oscillations of period (4 kF)^(-1). Based on the non-interacting result, we find a remarkably simple parametrization of the density profiles of the attractively interacting case, which we generalize to the one-body density matrix. While the total momentum is not a conserved quantity in the presence of hard walls, the magnitude of the momentum does provide a good quantum number. We are therefore able to provide a detailed characterization of the (quasi-)momentum distribution, which displays rather robust discontinuity at the Fermi surface. In addition, we determine the spatially varying on-site density-density correlation, which in turn yields Tans contact density and, upon integration, Tans contact. As is well known, the latter fully determines the short-range correlations and plays a crucial role in a multitude of equilibrium and non-equilibrium sum rules.
We investigate ground-state properties of interacting two-component Bose gases in a hard-wall trap using both the Bethe ansatz and exact numerical diagonalization method. For equal intra- and inter-atomic interaction, the system is exactly solvable.
The virial expansion characterizes the high-temperature approach to the quantum-classical crossover in any quantum many-body system. Here, we calculate the virial coefficients up to the fifth-order of Fermi gases in 1D, 2D, and 3D, with attractive co
We present in detail two variants of the lattice Monte Carlo method aimed at tackling systems in external trapping potentials: a uniform-lattice approach with hard-wall boundary conditions, and a non-uniform Gauss-Hermite lattice approach. Using thos
The formation of bosonic bound states underlies the formation of a superfluid ground state in the many-body phase diagram of ultracold Fermi gases. We study bound-state formation in a spin- and mass-imbalanced ultracold Fermi gas confined in a box wi
The one-body density matrix (OBDM) of a strongly interacting spinor quantum gas in one dimension can be written as a summation of products of spatial and spin parts. We find that there is a remarkable connection between the spatial part and the OBDM