ﻻ يوجد ملخص باللغة العربية
Recent work has explored binary waveguide arrays in the long-wavelength, near-continuum limit, here we examine the opposite limit, namely the vicinity of the so-called anti-continuum limit. We provide a systematic discussion of states involving one, two and three excited waveguides, and provide comparisons that illustrate how the stability of these states differ from the monoatomic limit of a single type of waveguide. We do so by developing a general theory which systematically tracks down the key eigenvalues of the linearized system. When we find the states to be unstable, we explore their dynamical evolution through direct numerical simulations. The latter typically illustrate, for the parameter values considered herein, the persistence of localized dynamics and the emergence for the duration of our simulations of robust quasi-periodic states for two excited sites. As the number of excited nodes increase, the unstable dynamics feature less regular oscillations of the solutions amplitude.
We study the influences to the discrete soliton (DS) by introducing linearly long-range nonlocal interactions, which give rise to the off-diagonal elements of the linearly coupled matrix in the discrete nonlinear schrodinger equation to be filled by
When propagated action potentials in cardiac tissue interact with local heterogeneities, reflected waves can sometimes be induced. These reflected waves have been associated with the onset of cardiac arrhythmias, and while their generation is not wel
We demonstrate that when a waveguide beam splitter (BS) is excited by N indistinguishable photons, the arising multiphoton states evolve in a way as if they were coupled to each other with coupling strengths that are identical to the ones exhibited b
Dissipative Kerr cavity solitons (CSs) are persisting pulses of light that manifest themselves in driven optical resonators and that have attracted significant attention over the last decade. Whilst the vast majority of studies have revolved around c
We consider a prototypical dynamical lattice model, namely, the discrete nonlinear Schroedinger equation on nonsquare lattice geometries. We present a systematic classification of the solutions that arise in principal six-lattice-site and three-latti