ﻻ يوجد ملخص باللغة العربية
We consider the propagation of electromagnetic waves through a dilaton-Maxwell domain wall of the type introduced by Gibbons and Wells [G.W. Gibbons and C.G. Wells, Class. Quant. Grav. 11, 2499-2506 (1994)]. It is found that if such a wall exists within our observable universe, it would be absurdly thick, or else have a magnetic field in its core which is much stronger than observed intergalactic fields. We conclude that it is highly improbable that any such wall is physically realized.
We study the evolution of cosmological perturbations in a non-singular bouncing cosmology with a bounce phase which has superimposed oscillations of the scale factor. We identify length scales for which the final spectrum of fluctuations obtains impr
We study the information quantities, including the holographic entanglement entropy (HEE), mutual information (MI) and entanglement of purification (EoP), over Gubser-Rocha model. The remarkable property of this model is the zero entropy density at g
We consider a brane cosmology scenario by taking an inflating 3D domain wall immersed in a five-dimensional Minkowski space in the presence of a stack of $N$ parallel domain walls. They are static BPS solutions of the bosonic sector of a 5D supergrav
We extend earlier work by introducing an Einstein-Maxwell-dilaton (EMD) action with two quark flavours. We solve the corresponding equations of motion in the quenched approximation (probe quark flavours) via the potential reconstruction method in pre
Based on dilatonic dark energy model, we consider two cases: dilaton field with positive kinetic energy(coupled quintessence) and with negative kinetic energy(phantom). In the two cases, we investigate the existence of attractor solutions which corre