ترغب بنشر مسار تعليمي؟ اضغط هنا

PAGaN II: The Evolution of AGN Jets on Sub-Parsec Scales

114   0   0.0 ( 0 )
 نشر من قبل Sascha Trippe
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report first results from KVN and VERA Array (KaVA) VLBI observations obtained in the frame of our Plasma-physics of Active Galactic Nuclei (PAGaN) project. We observed eight selected AGN at 22 and 43 GHz in single polarization (LCP) between March 2014 and April 2015. Each source was observed for 6 to 8 hours per observing run to maximize the $uv$ coverage. We obtained a total of 15 deep high-resolution images permitting the identification of individual circular Gaussian jet components and three spectral index maps of BL Lac, 3C 111 and 3C 345 from simultaneous dual-frequency observations. The spectral index maps show trends in agreement with general expectations -- flat core and steep jets -- while the actual value of the spectral index for jets shows indications for a dependence on AGN type. We analyzed the kinematics of jet components of BL Lac and 3C 111, detecting superluminal proper motions with maximum apparent speeds of about $5c$. This constrains the lower limits of the intrinsic component velocities to $sim0.98c$ and the upper limits of the angle between jet and line of sight to $sim$20$deg$. In agreement with global jet expansion, jet components show systematically larger diameters $d$ at larger core distances $r$, following the global relation $dapprox0.2r$, albeit within substantial scatter.



قيم البحث

اقرأ أيضاً

91 - Jae-Young Kim 2015
Active Galactic Nuclei (AGN) with bright radio jets offer the opportunity to study the structure of and physical conditions in relativistic outflows. For such studies, multi-frequency polarimetric very long baseline interferometric (VLBI) observation s are important as they directly probe particle densities, magnetic field geometries, and several other parameters. We present results from first-epoch data obtained by the Korean VLBI Network (KVN) within the frame of the Plasma Physics of Active Galactic Nuclei (PAGaN) project. We observed seven radio-bright nearby AGN at frequencies of 22, 43, 86, and 129 GHz in dual polarization mode. Our observations constrain apparent brightness temperatures of jet components and radio cores in our sample to $>10^{8.01}$ K and $>10^{9.86}$ K, respectively. Degrees of linear polarization $m_{L}$ are relatively low overall: less than 10%. This indicates suppression of polarization by strong turbulence in the jets. We found an exceptionally high degree of polarization in a jet component of BL Lac at 43 GHz, with $m_{L} sim$ 40%. Assuming a transverse shock front propagating downstream along the jet, the shock front being almost parallel to the line of sight can explain the high degree of polarization.
160 - Y. Y. Kovalev 2009
We have compared the radio emission from a sample of parsec-scale AGN jets as measured by the VLBA at 15 GHz, with their associated gamma-ray properties that are reported in the Fermi LAT 3-month bright source list. We find in our radio-selected samp le that the gamma-ray photon flux correlates well with the quasi-simultaneously measured compact radio flux density. The LAT-detected jets in our radio-selected complete sample generally have higher compact radio flux densities, and their parsec-scale cores are brighter (i.e., have higher brightness temperature) than the jets in the LAT non-detected objects. This suggests that the jets of bright gamma-ray AGN have preferentially higher Doppler-boosting factors. In addition, AGN jets tend to be found in a more active radio state within several months from LAT-detection of their strong gamma-ray emission. This result becomes more pronounced for confirmed gamma-ray flaring sources. We identify the parsec-scale radio core as a likely location for both the gamma-ray and radio flares, which appear within typical timescales of up to a few months of each other.
We report the systematic analysis of knots, hotspots, and lobes in 57 active galactic nuclei (AGNs) to investigate the variation of the magnetic field along with the jet from the sub-pc base to the terminus in kpc-to-Mpc scales. Expanding the number of radio/X-ray samples in Kataoka & Stawarz (2005), we analyzed the data in 12 FR I and 30 FR II radio galaxies, 12 quasars, and 3 BL Lacs that contained 76 knots, 42 hotspots, and 29 radio lobes. We first derived the equipartition magnetic fields in the cores and then estimated those in various jet components by assuming $B_{rm est}$ $propto$ $d^{-1}$, where $d$ is the distance from the jet base. On the other hand, the magnetic field in large-scale jets (knots, hotspots, and lobes), $B_{rm eq}$, can be estimated from the observed flux and spatial extent under the equipartition hypothesis. We show that the magnetic field decreases as the distance along the jet increases, but generally gentler than $propto d^{-1}$. The increase in $B_{rm eq}/B_{rm est}$ at a larger $d$ may suggest the deceleration of the jet around the downstream, but there is no difference between FR I and FR II jets. Moreover, the magnetic fields in the hotspots are systematically larger than those of knots and lobes. Finally, we applied the same analysis to knots and lobes in Centaurus A to check whether the above discussion will hold even in a single jet source.
We report on the acceleration properties of 329 features in 95 blazar jets from the MOJAVE VLBA program. Nearly half the features and three-quarters of the jets show significant changes in speed and/or direction. In general, apparent speed changes ar e distinctly larger than changes in direction, indicating that changes in the Lorentz factors of jet features dominate the observed speed changes rather than bends along the line of sight. Observed accelerations tend to increase the speed of features near the jet base, $lesssim 10-20$ parsecs projected, and decrease their speed at longer distances. The range of apparent speeds at fixed distance in an individual jet can span a factor of a few, indicating that shock properties and geometry may influence the apparent motions; however, we suggest that the broad trend of jet features increasing their speed near the origin is due to an overall acceleration of the jet flow out to de-projected distances of order $10^2$ parsecs, beyond which the flow begins to decelerate or remains nearly constant in speed. We estimate intrinsic rates of change of the Lorentz factors in the galaxy frame of order $dot{Gamma}/Gamma simeq 10^{-3}$ to $10^{-2}$ per year which can lead to total Lorentz factor changes of a factor of a few on the length scales observed here. Finally, we also find evidence for jet collimation at projected distances of $lesssim 10$ parsecs in the form of the non-radial motion and bending accelerations that tend to better align features with the inner jet.
A number of works reported on the existence of a large scale alignment of the polarization plane of extragalactic sources as well as the alignment of radio-sources structural axes. However, both claims and their interpretation remain controversial. F or the first time we explore the parsec-scale jets alignments. Additionally, we use archival polarimetric data at different wavelengths in order to compare relative orientations of the jets and the polarization planes of their emission. Using the flux density distribution in very long baseline interferometry (VLBI) radio maps from the Astrogeo database, we determine the parsec-scale jet orientation for the largest sample of active galactic nuclei (AGN) to date. Employing the method of parallel transport and a sample statistics characterizing the jet orientation dispersion among neighbors, we test whether the identified jets are significantly aligned. We show that the parsec-scale jets in our sample do not demonstrate any significant global alignments. Moreover, the jet direction is found to be weakly correlated with the polarization plane direction at different frequencies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا