ترغب بنشر مسار تعليمي؟ اضغط هنا

Systematic effects in polarizing Fourier transform spectrometers for cosmic microwave background observations

67   0   0.0 ( 0 )
 نشر من قبل Peter Nagler
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The detection of the primordial B-mode polarization signal of the cosmic microwave background (CMB) would provide evidence for inflation. Yet as has become increasingly clear, the detection of a such a faint signal requires an instrument with both wide frequency coverage to reject foregrounds and excellent control over instrumental systematic effects. Using a polarizing Fourier transform spectrometer (FTS) for CMB observations meets both these requirements. In this work, we present an analysis of instrumental systematic effects in polarizing Fourier transform spectrometers, using the Primordial Inflation Explorer (PIXIE) as a worked example. We analytically solve for the most important systematic effects inherent to the FTS - emissive optical components, misaligned optical components, sampling and phase errors, and spin synchronous effects - and demonstrate that residual systematic error terms after corrections will all be at the sub-nK level, well below the predicted 100 nK B-mode signal.

قيم البحث

اقرأ أيضاً

The most accessible method to measure polarization features of the CMB radiation is by means of a Stokes Polarimeter based on the rotation of an Half Wave Plate. The current observational cosmology is starting to be limited by the presence of systema tic effects. The Stokes polarimeter with a rotating Half Wave Plate (HWP) has the advantage of mitigating a long list of potential systematics, by modulation of the linearly polarized component of the radiation, but the presence of the rotating HWP can by itself introduce new systematic effects, which must be under control, representing one of the most critical part in the design of a B-Modes experiment. In this paper we present, simulate and analyse the spurious signal arising from the precession of a rotating HWP. We first find an analytical formula for the impact of the systematic effect induced by the HWP precession on the propagating radiation, using the 3D generalization of the Muller formalism. We then perform several numerical simulations, showing the effect induced on the Stokes parameters by this systematic. We also derive and discuss the impact into B-modes measured by a satellite experiment. We find the analytical formula for the Stokes parameters from a Stokes polarimeter where the HWP follows a precessional motion with an angle $theta_0$. We show the result depending on the HWP inertia tensor, spinning speed and on $theta_0$. The result of numerical simulations is reported as a simple timeline of the electric fields. Finally, assuming to observe all the sky with a satellite mission, we analyze the effect on B-modes measurements. The effect is not negligible giving the current B-modes experiments sensitivity, therefore it is a systematic which needs to be carefully considered for future experiments.
We have developed a digital fast Fourier transform (FFT) spectrometer made of an analog-to-digital converter (ADC) and a field-programmable gate array (FPGA). The base instrument has independent ADC and FPGA modules, which allow us to implement diffe rent spectrometers in a relatively easy manner. Two types of spectrometers have been instrumented, one with 4.096 GS/s sampling speed and 2048 frequency channels and the other with 2.048 GS/s sampling speed and 32768 frequency channels. The signal processing in these spectrometers has no dead time and the accumulated spectra are recorded in external media every 8 ms. A direct sampling spectroscopy up to 8 GHz is achieved by a microwave track-and-hold circuit, which can reduce the analog receiver in front of the spectrometer. Highly stable spectroscopy with a wide dynamic range was demonstrated in a series of laboratory experiments and test observations of solar radio bursts.
We present the design and performance of broadband and tunable infrared-blocking filters for millimeter and sub-millimeter astronomy composed of small scattering particles embedded in an aerogel substrate. The ultra-low-density (typically < 150 mg/cm ^3) aerogel substrate provides an index of refraction as low as 1.05, removing the need for anti-reflection coatings and allowing for broadband operation from DC to above 1 THz. The size distribution of the scattering particles can be tuned to provide a variable cutoff frequency. Aerogel filters with embedded high-resistivity silicon powder are being produced at 40-cm diameter to enable large-aperture cryogenic receivers for cosmic microwave background polarimeters, which require large arrays of sub-Kelvin detectors in their search for the signature of an inflationary gravitational-wave background.
Cosmic strings are a well-motivated extension to the standard cosmological model and could induce a subdominant component in the anisotropies of the cosmic microwave background (CMB), in addition to the standard inflationary component. The detection of strings, while observationally challenging, would provide a direct probe of physics at very high energy scales. We develop a new framework for cosmic string inference, constructing a Bayesian analysis in wavelet space where the string-induced CMB component has distinct statistical properties to the standard inflationary component. Our wavelet-Bayesian framework provides a principled approach to compute the posterior distribution of the string tension $Gmu$ and the Bayesian evidence ratio comparing the string model to the standard inflationary model. Furthermore, we present a technique to recover an estimate of any string-induced CMB map embedded in observational data. Using Planck-like simulations we demonstrate the application of our framework and evaluate its performance. The method is sensitive to $Gmu sim 5 times 10^{-7}$ for Nambu-Goto string simulations that include an integrated Sachs-Wolfe (ISW) contribution only and do not include any recombination effects, before any parameters of the analysis are optimised. The sensitivity of the method compares favourably with other techniques applied to the same simulations.
We investigate the impact of instrumental systematic errors in interferometric measurements of the cosmic microwave background (CMB) temperature and polarization power spectra. We simulate interferometric CMB observations to generate mock visibilitie s and estimate power spectra using the statistically optimal maximum likelihood technique. We define a quadratic error measure to determine allowable levels of systematic error that do not induce power spectrum errors beyond a given tolerance. As an example, in this study we focus on differential pointing errors. The effects of other systematics can be simulated by this pipeline in a straightforward manner. We find that, in order to accurately recover the underlying B-modes for r=0.01 at 28<l<384, Gaussian-distributed pointing errors must be controlled to 0.7^circ rms for an interferometer with an antenna configuration similar to QUBIC, in agreement with analytical estimates. Only the statistical uncertainty for 28<l<88 would be changed at ~10% level. With the same instrumental configuration, we find the pointing errors would slightly bias the 2-sigma upper limit of the tensor-to-scalar ratio r by ~10%. We also show that the impact of pointing errors on the TB and EB measurements is negligibly small.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا