ترغب بنشر مسار تعليمي؟ اضغط هنا

A tensor network quotient takes the vacuum to the thermal state

71   0   0.0 ( 0 )
 نشر من قبل Bartlomiej Czech
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In 1+1-dimensional conformal field theory, the thermal state on a circle is related to a certain quotient of the vacuum on a line. We explain how to take this quotient in the MERA tensor network representation of the vacuum and confirm the validity of the construction in the critical Ising model. This result suggests that the tensors comprising MERA can be interpreted as performing local scale transformations, so that adding or removing them emulates conformal maps. In this sense, the optimized MERA recovers local conformal invariance, which is explicitly broken by the choice of lattice. Our discussion also informs the dialogue between tensor networks and holographic duality.



قيم البحث

اقرأ أيضاً

291 - Dai-Wei Qu , Wei Li , 2019
We have extended the canonical tree tensor network (TTN) method, which was initially introduced to simulate the zero-temperature properties of quantum lattice models on the Bethe lattice, to finite temperature simulations. By representing the thermal density matrix with a canonicalized tree tensor product operator, we optimize the TTN and accurately evaluate the thermodynamic quantities, including the internal energy, specific heat, and the spontaneous magnetization, etc, at various temperatures. By varying the anisotropic coupling constant $Delta$, we obtain the phase diagram of the spin-1/2 Heisenberg XXZ model on the Bethe lattice, where three kinds of magnetic ordered phases, namely the ferromagnetic, XY and antiferromagnetic ordered phases, are found in low temperatures and separated from the high-$T$ paramagnetic phase by a continuous thermal phase transition at $T_c$. The XY phase is separated from the other two phases by two first-order phase transition lines at the symmetric coupling points $ Delta=pm 1$. We have also carried out a linear spin wave calculation on the Bethe lattice, showing that the low-energy magnetic excitations are always gapped, and find the obtained magnon gaps in very good agreement with those estimated from the TTN simulations. Despite the gapped excitation spectrum, Goldstone-like transverse fluctuation modes, as a manifestation of spontaneous continuous symmetry breaking, are observed in the ordered magnetic phases with $|Delta|le 1$. One remarkable feature there is that the prominent transverse correlation length reaches $xi_c=1/ln{(z-1)}$ for $Tleq T_c$, the maximal value allowed on a $z$-coordinated Bethe lattice.
We present a 2D bosonization duality using the language of tensor networks. Specifically, we construct a tensor network operator (TNO) that implements an exact 2D bosonization duality. The primary benefit of the TNO is that it allows for bosonization at the level of quantum states. Thus, we use the TNO to provide an explicit algorithm for bosonizing fermionic projected entangled pair states (fPEPs). A key step in the algorithm is to account for a choice of spin-structure, encoded in a set of bonds of the bosonized fPEPS. This enables our tensor network approach to bosonization to be applied to systems on arbitrary triangulations of orientable 2D manifolds.
Recently, the tensor network states (TNS) methods have proven to be very powerful tools to investigate the strongly correlated many-particle physics in one and two dimensions. The implementation of TNS methods depends heavily on the operations of ten sors, including contraction, permutation, reshaping tensors, SVD and son on. Unfortunately, the most popular computer languages for scientific computation, such as Fortran and C/C++ do not have a standard library for such operations, and therefore make the coding of TNS very tedious. We develop a Fortran2003 package that includes all kinds of basic tensor operations designed for TNS. It is user-friendly and flexible for different forms of TNS, and therefore greatly simplifies the coding work for the TNS methods.
We develop a strategy for tensor network algorithms that allows to deal very efficiently with lattices of high connectivity. The basic idea is to fine-grain the physical degrees of freedom, i.e., decompose them into more fundamental units which, afte r a suitable coarse-graining, provide the original ones. Thanks to this procedure, the original lattice with high connectivity is transformed by an isometry into a simpler structure, which is easier to simulate via usual tensor network methods. In particular this enables the use of standard schemes to contract infinite 2d tensor networks - such as Corner Transfer Matrix Renormalization schemes - which are more involved on complex lattice structures. We prove the validity of our approach by numerically computing the ground-state properties of the ferromagnetic spin-1 transverse-field Ising model on the 2d triangular and 3d stacked triangular lattice, as well as of the hard-core and soft-core Bose-Hubbard models on the triangular lattice. Our results are benchmarked against those obtained with other techniques, such as perturbative continuous unitary transformations and graph projected entangled pair states, showing excellent agreement and also improved performance in several regimes.
In this Letter we discuss a few issues concerning the magnetic susceptibility of the quark condensate and the Son-Yamamoto (SY) anomaly matching equation. It is shown that the SY relation in the IR implies a nontrivial interplay between the kinetic a nd WZW terms in the chiral Lagrangian. It is also demonstrated that in a holographic framework an external magnetic field triggers mixing between scalar and tensor fields. Accounting for this, one may calculate the magnetic susceptibility of the quark condensate to all orders in the magnetic field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا