ترغب بنشر مسار تعليمي؟ اضغط هنا

New and updated convex shape models of asteroids based on optical data from a large collaboration network

59   0   0.0 ( 0 )
 نشر من قبل Josef Hanu\\v{s}
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Asteroid modeling efforts in the last decade resulted in a comprehensive dataset of almost 400 convex shape models and their rotation states. This amount already provided a deep insight into physical properties of main-belt asteroids or large collisional families. We aim to increase the number of asteroid shape models and rotation states. Such results are an important input for various further studies such as analysis of asteroid physical properties in different populations, including smaller collisional families, thermophysical modeling, and scaling shape models by disk-resolved images, or stellar occultation data. This provides, in combination with known masses, bulk density estimates, but constrains also theoretical collisional and evolutional models of the Solar System. We use all available disk-integrated optical data (i.e., classical dense-in-time photometry obtained from public databases and through a large collaboration network as well as sparse-in-time individual measurements from a few sky surveys) as an input for the convex inversion method, and derive 3D shape models of asteroids, together with their rotation periods and orientations of rotation axes. The key ingredient is the support of more that one hundred observers who submit their optical data to publicly available databases. We present updated shape models for 36 asteroids, for which mass estimates are currently available in the literature or their masses will be most likely determined from their gravitational influence on smaller bodies, which orbital deflection will be observed by the ESA Gaia astrometric mission. This was achieved by using additional optical data from recent apparitions for the shape optimization. Moreover, we also present new shape model determinations for 250 asteroids, including 13 Hungarias and 3 near-Earth asteroids.

قيم البحث

اقرأ أيضاً

Context. The so-called Barbarian asteroids share peculiar, but common polarimetric properties, probably related to both their shape and composition. They are named after (234) Barbara, the first on which such properties were identified. As has been s uggested, large scale topographic features could play a role in the polarimetric response, if the shapes of Barbarians are particularly irregular and present a variety of scattering/incidence angles. This idea is supported by the shape of (234) Barbara, that appears to be deeply excavated by wide concave areas revealed by photometry and stellar occultations. Aims. With these motivations, we started an observation campaign to characterise the shape and rotation properties of Small Main- Belt Asteroid Spectroscopic Survey (SMASS) type L and Ld asteroids. As many of them show long rotation periods, we activated a worldwide network of observers to obtain a dense temporal coverage. Methods. We used light-curve inversion technique in order to determine the sidereal rotation periods of 15 asteroids and the con- vergence to a stable shape and pole coordinates for 8 of them. By using available data from occultations, we are able to scale some shapes to an absolute size. We also study the rotation periods of our sample looking for confirmation of the suspected abundance of asteroids with long rotation periods. Results. Our results show that the shape models of our sample do not seem to have peculiar properties with respect to asteroids with similar size, while an excess of slow rotators is most probably confirmed.
Results from the TESS mission showed that previous studies strngly underestimated the number of slow rotators, revealing the importance of studying those asteroids. For most slowly rotating asteroids (P > 12), no spin and shape model is available bec ause of observation selection effects. This hampers determination of their thermal parameters and accurate sizes. We continue our campaign in minimising selection effects among main belt asteroids. Our targets are slow rotators with low light-curve amplitudes. The goal is to provide their scaled spin and shape models together with thermal inertia, albedo, and surface roughness to complete the statistics. Rich multi-apparition datasets of dense light curves are supplemented with data from Kepler and TESS. In addition to data in the visible range, we also use thermal data from infrared space observatories (IRAS, Akari and WISE) in a combined optimisation process using the Convex Inversion Thermophysical Model (CITPM). This novel method has so far been applied to only a few targets, and in this work we further validate the method. We present the models of 16 slow rotators. All provide good fits to both thermal and visible data. The obtained sizes are on average accurate at the 5% precision, with diameters in the range from 25 to 145 km. The rotation periods of our targets range from 11 to 59 hours, and the thermal inertia covers a wide range of values, from 2 to <400 SI units, not showing any correlation with the period. With this work we increase the sample of slow rotators with reliable spin and shape models and known thermal inertia by 40%. The thermal inertia values of our sample do not display a previously suggested increasing trend with rotation period, which might be due to their small skin depth.
Context. A lot of photometric data is produced by surveys such as Pan-STARRS, LONEOS, WISE or Catalina. These data are a rich source of information about the physical properties of asteroids. There are several possible approaches for utilizing these data. Lightcurve inversion is a typical method that works with individual asteroids. Our approach in this paper is statistical when we focused on large groups of asteroids like dynamical families and taxonomic classes, and the data were not sufficient for individual models. Aims. Our aim was to study the distributions of shape elongation $b/a$ and the spin axis latitude $beta$ for various subpopulations of asteroids and to compare our results, based on Pan-STARRS1 survey, with statistics previously done using different photometric data (Lowell database, WISE data). Methods. We use the LEADER algorithm to compare the $b/a$ and $beta$ distributions for different subpopulations of asteroids. The algorithm creates a cumulative distributive function (CDF) of observed brightness variations, and computes the $b/a$ and $beta$ distributions using analytical basis functions that yield the observed CDF. A variant of LEADER is used to solve the joint distributions for synthetic populations to test the validity of the method. Results. When comparing distributions of shape elongation for groups of asteroids with different diameters $D$, we found that there are no differences for $D < 25$ km. We also constructed distributions for asteroids with different rotation periods and revealed that the fastest rotators with $P = 0 - 4$ h are more spheroidal than the population with $P = 4 - 8$ h.
Recent years have seen increasing interest in the characterization of sub-Neptune sized planets because of their prevalence in the Galaxy, contrasted with their absence in our solar system. HD 97658 is one of the brightest stars hosting a planet of t his kind, and we present the transmission spectrum of this planet by combining four HST transits, twelve Spitzer/IRAC transits, and eight MOST transits of this system. Our transmission spectrum has higher signal to noise ratio than that from previous works, and the result suggests that the slight increase in transit depth from wavelength 1.1 to 1.7 microns reported in previous works on the transmission spectrum of this planet is likely systematic. Nonetheless, our atmospheric modeling results are not conclusive as no model provides an excellent match to our data. Nonetheless we find that atmospheres with high C/O ratios (C/O >~ 0.8) and metallicities of >~ 100x solar metallicity are favored. We combine the mid-transit times from all the new Spitzer and MOST observations and obtain an updated orbital period of P=9.489295 +/- 0.000005 d, with a best-fit transit time center at T_0 = 2456361.80690 +/- 0.00038 (BJD). No transit timing variations are found in this system. We also present new measurements of the stellar rotation period (34 +/- 2 d) and stellar activity cycle (9.6 yr) of the host star HD 97658. Finally, we calculate and rank the Transmission Spectroscopy Metric of all confirmed planets cooler than 1000 K and with sizes between 1 and 4 R_Earth. We find that at least a third of small planets cooler than 1000 K can be well characterized using JWST, and of those, HD 97658b is ranked fifth, meaning it remains a high-priority target for atmospheric characterization.
Kepler mission is a powerful tool in the study the different types of astrophysical objects or events in the distant Universe. However, the spacecraft gives also the opportunity to study Solar System objects passing in the telescope field of view. Th e aim of this paper is to determine for the first time the rotation periods of a number of asteroids observed by the Kepler satellite during the K2 Campaign 9. Using publicly available data from Kepler mission we have used the Modified Causal Pixel Model (MCPM) code to perform the aperture-like and PRF-like photometry of 1026 asteroids. The results allowed us to determine the rotation periods for 188 asteroids. For asteroids with rotation periods previously measured, we compared the results and found very good agreement. There are additional 20 asteroids for which we obtained lower limits on rotation periods and in all cases these limits are at least 100 h.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا