ﻻ يوجد ملخص باللغة العربية
Asteroid modeling efforts in the last decade resulted in a comprehensive dataset of almost 400 convex shape models and their rotation states. This amount already provided a deep insight into physical properties of main-belt asteroids or large collisional families. We aim to increase the number of asteroid shape models and rotation states. Such results are an important input for various further studies such as analysis of asteroid physical properties in different populations, including smaller collisional families, thermophysical modeling, and scaling shape models by disk-resolved images, or stellar occultation data. This provides, in combination with known masses, bulk density estimates, but constrains also theoretical collisional and evolutional models of the Solar System. We use all available disk-integrated optical data (i.e., classical dense-in-time photometry obtained from public databases and through a large collaboration network as well as sparse-in-time individual measurements from a few sky surveys) as an input for the convex inversion method, and derive 3D shape models of asteroids, together with their rotation periods and orientations of rotation axes. The key ingredient is the support of more that one hundred observers who submit their optical data to publicly available databases. We present updated shape models for 36 asteroids, for which mass estimates are currently available in the literature or their masses will be most likely determined from their gravitational influence on smaller bodies, which orbital deflection will be observed by the ESA Gaia astrometric mission. This was achieved by using additional optical data from recent apparitions for the shape optimization. Moreover, we also present new shape model determinations for 250 asteroids, including 13 Hungarias and 3 near-Earth asteroids.
Context. The so-called Barbarian asteroids share peculiar, but common polarimetric properties, probably related to both their shape and composition. They are named after (234) Barbara, the first on which such properties were identified. As has been s
Results from the TESS mission showed that previous studies strngly underestimated the number of slow rotators, revealing the importance of studying those asteroids. For most slowly rotating asteroids (P > 12), no spin and shape model is available bec
Context. A lot of photometric data is produced by surveys such as Pan-STARRS, LONEOS, WISE or Catalina. These data are a rich source of information about the physical properties of asteroids. There are several possible approaches for utilizing these
Recent years have seen increasing interest in the characterization of sub-Neptune sized planets because of their prevalence in the Galaxy, contrasted with their absence in our solar system. HD 97658 is one of the brightest stars hosting a planet of t
Kepler mission is a powerful tool in the study the different types of astrophysical objects or events in the distant Universe. However, the spacecraft gives also the opportunity to study Solar System objects passing in the telescope field of view. Th