ﻻ يوجد ملخص باللغة العربية
Most molecular clouds are filamentary or elongated. Among those forming low-mass stars, their long axes tend to be either parallel or perpendicular to the large-scale (10-100 pc) magnetic field (B-field) in the surrounding inter cloud medium. This arises because, along the dynamically dominant B-fields, the competition between self-gravity and turbulent pressure will shape the cloud to be elongated either perpendicular or parallel to the fields. Recent study also suggested that, on the scales of 0.1-0.01 pc, fields are dynamically important within cloud cores forming massive stars. But whether the core field morphologies are inherited from the inter cloud medium or governed by cloud turbulence is under vigorous debate, so is the role played by B-fields in cloud fragmentation at 10 - 0.1 pc scales. Here we report B-field maps covering 100-0.01 pc scales inferred from polarimetric observations of a massive-star forming region, NGC 6334. First, the main filament also lies perpendicular to the ambient field. NGC 6334 hosts young star-forming sites where fields are not severely affected by stellar feedback, and their directions do not change significantly over the entire scale range. This means that the fields are dynamically important. At various scales, we find that the hourglass-shaped field lines are pinched where the gas column density peaks and the field strength is proportional to the 0.4-power of the density. We conclude that B-fields play a crucial role in the fragmentation of NGC 6334.
In an early-type, massive star binary system, X-ray bright shocks result from the powerful collision of stellar winds driven by radiation pressure on spectral line transitions. We examine the influence of the X-rays from the wind-wind collision shock
Massive stars, multiple stellar systems and clusters are born from the gravitational collapse of massive dense gaseous clumps, and the way these systems form strongly depends on how the parent clump fragments into cores during collapse. Numerical sim
Cold, dense filaments, some appearing as infrared dark clouds, are the nurseries of stars. Tremendous progress in terms of temperature, density distribution and gas kinematics has been made in understanding the nature of these filaments. However, ver
We investigate the effects of mass loss during the main-sequence (MS) and post-MS phases of massive star evolution on black hole (BH) birth masses. We compute solar metallicity Geneva stellar evolution models of an 85 $M_{odot}$ star with mass-loss r
(Abridged) We investigate massive star formation in turbulent, magnetized, parsec-scale clumps of molecular clouds including protostellar outflow feedback using Enzo-based MHD simulations with accreting sink particles and effective resolution $2048^3