ترغب بنشر مسار تعليمي؟ اضغط هنا

Covariantised Vector Galileons

78   0   0.0 ( 0 )
 نشر من قبل Matthew Hull
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Vector Galileons are ghost-free systems containing higher derivative interactions of vector fields. They break the vector gauge symmetry, and the dynamics of the longitudinal vector polarizations acquire a Galileon symmetry in an appropriate decoupling limit in Minkowski space. Using an ADM approach, we carefully reconsider the coupling with gravity of vector Galileons, with the aim of studying the necessary conditions to avoid the propagation of ghosts. We develop arguments that put on a more solid footing the results previously obtained in the literature. Moreover, working in analogy with the scalar counterpart, we find indications for the existence of a `beyond Horndeski theory involving vector degrees of freedom, that avoids the propagation of ghosts thanks to secondary constraints. In addition, we analyze a Higgs mechanism for generating vector Galileons through spontaneous symmetry breaking, and we present its consistent covariantisation.



قيم البحث

اقرأ أيضاً

Vector theories with non-linear derivative self-interactions that break gauge symmetries have been shown to have interesting cosmological applications. In this paper we introduce a way to spontaneously break the gauge symmetry and construct these the ories via a Higgs mechanism. In addition to the purely gauge field interactions, our method generates new ghost-free scalar-vector interactions between the Higgs field and the gauge boson. We show how these additional terms are found to reduce, in a suitable decoupling limit, to scalar bi-Galileon interactions between the Higgs field and Goldstone bosons. Our formalism is first developed in the context of abelian symmetry, which allows us to connect with earlier work on the extension of the Proca action. We then show how this formalism is straightforwardly generalised to generate theories with non-abelian symmetry.
We derive analyticity constraints on a nonlinear ghost-free effective theory of a massive spin-2 particle known as pseudo-linear massive gravity, and on a generalized theory of a massive spin-1 particle, both of which provide simple IR completions of Galileon theories. For pseudo-linear massive gravity we find that, unlike dRGT massive gravity, there is no window of parameter space which satisfies the analyticity constraints. For massive vectors which reduce to Galileons in the decoupling limit, we find that no two-derivative actions are compatible with positivity, but that higher derivative actions can be made compatible.
An alternative for the construction of fundamental theories is the introduction of Galileons. These are fields whose action leads to non higher than second-order equations of motion. As this is a necessary but not sufficient condition to make the Ham iltonian bounded from below, as long as the action is not degenerate, the Galileon construction is a way to avoid pathologies both at the classical and quantum levels. Galileon actions are, therefore, of great interest in many branches of physics, specially in high energy physics and cosmology. This proceedings contribution presents the generalities of the construction of both scalar and vector Galileons following two different but complimentary routes.
A certain class of nonlocal theories eliminates an arbitrary cosmological constant (CC) from a universe that can be perceived as our world. Dark energy then cannot be explained by a CC; it could however be due to massive gravity. We calculate the new corrections, which originate from the nonlocal terms that eliminate the CC, to the decoupling limit Lagrangian of massive gravity. The new nonlocal terms also have internal field space Galilean symmetry and are referred here as nonlocal Galileons. We then study a self-accelerated solution and show that the new nonlocal terms change the perturbative stability analysis. In particular, small fluctuations are now stable and non-superluminal for some simple parameter choices, whereas for the same choices the pure massive gravity fluctuations are unstable. We also study stable spherically symmetric solutions on this background.
It is possible to couple Dirac-Born-Infeld (DBI) scalars possessing generalized Galilean internal shift symmetries (Galileons) to nonlinear massive gravity in four dimensions, in such a manner that the interactions maintain the Galilean symmetry. Suc h a construction is of interest because it is not possible to couple such fields to massless General Relativity in the same way. We show that this theory has the primary constraint necessary to eliminate the Boulware-Deser ghost, thus preserving the attractive properties of both the Galileons and ghost-free massive gravity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا