ترغب بنشر مسار تعليمي؟ اضغط هنا

M dwarfs and the fraction of high carbon-to-oxygen stars in the solar neighbourhood

98   0   0.0 ( 0 )
 نشر من قبل John E. Gizis
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the frequency of high carbon-to-oxygen (C/O $= 0.9$) M dwarf stars in the solar neighbourhood. Using synthetic spectra, we find that such M dwarfs would have weaker TiO bands relative to hydride features. Similar weakening has already been detected in M-subdwarf (sdM) stars. By comparing to existing spectroscopic surveys of nearby stars, we show that less than one percent of nearby stars have high carbon-to-oxygen ratios. This limit does not include stars with C/O$=0.9$, [m/H]$>0.3$, and [C/Fe]$>0.1$, which we predict to have low-resolution optical spectra similar to solar metallicity M dwarfs.

قيم البحث

اقرأ أيضاً

The most abundant stars in the Galaxy, M dwarfs, are very commonly hosts to diverse systems of low-mass planets. Their abundancy implies that the general occurrence rate of planets is dominated by their occurrence rate around such M dwarfs. In this a rticle, we combine the M dwarf surveys conducted with the HIRES/Keck, PFS/Magellan, HARPS/ESO, and UVES/VLT instruments supported with data from several other instruments. We analyse the radial velocities of an approximately volume- and brightness-limited sample of 426 nearby M dwarfs in order to search for Doppler signals of cadidate planets. In addition, we analyse spectroscopic activity indicators and ASAS photometry to rule out radial velocity signals corresponding to stellar activity as Doppler signals of planets. We calculate estimates for the occurrence rate of planets around the sample stars and study the properties of this occurrence rate as a function of stellar properties. Our analyses reveal a total of 118 candidate planets orbiting nearby M dwarfs. Based on our results accounting for selection effects and sample detection threshold, we estimate that M dwarfs have on average at least 2.39$^{+4.58}_{-1.36}$ planets per star orbiting them. Accounting for the different sensitivities of radial velocity surveys and Kepler transit photometry implies that there are at least 3.0 planets per star orbiting M dwarfs. We also present evidence for a population of cool mini-Neptunes and Neptunes with indications that they are found an order of magnitude more frequently orbiting the least massive M dwarfs in our sample.
We find that the combined LF of N- and SC-type stars are consistent with a Gaussian distribution peaking at M_bol~ -5.2 mag. The resulting LF however shows two tails at lower and higher luminosities more extended than those previously found, indicati ng that AGB carbon stars with Solar metallicity may reach M_bol~-6.0 mag. We find that J-type stars are about half a magnitude fainter on average than N- and SC-type stars, while R-hot stars are half a magnitude brighter than previously found. The Galactic spatial distribution and velocity components of the N-, SC- and J-type stars are very similar, while about 30 % of the R-hot stars in the sample are located at distances larger than ~ 500 pc from the Galactic Plane, and show a significant drift with respect to the local standard of rest. The LF derived for N- and SC-type in the Solar neighbourhood fully agrees with the expected luminosity of stars of 1.5-3 M_o on the AGB. On a theoretical basis, the existence of an extended low luminosity tail would require a contribution of extrinsic low mass carbon stars, while the high luminosity one would imply that stars with mass up to ~5 Mo may become carbon star on the AGB. J-type stars not only differ significantly in their chemical composition with respect to the N- and SC-types but also in their LF, which reinforces the idea that these carbon stars belong to a dvifferent type whose origin is still unknown. The derived luminosities of R-hot stars make these stars unlikely to be in the red-clump as previously claimed. On the other hand, the derived spatial distribution and kinematic properties, together with their metallicity, indicate that most of the N-, SC- and J-type stars belong to the thin disc population, while a significant fraction of R-hot stars show characteristics compatible with the thick disc.
CH stars form a distinct class of objects with characteristic properties like iron deficiency, enrichment of carbon and overabundance in heavy elements. These properties can provide strong observational constraints for theoretical computation of nucl eosynthesis at low-metallicity. An important question is the relative surface density of CH stars which can provide valuable inputs to our understanding on the role of low to intermediate-mass stars in the early Galactic chemical evolution. Spectroscopic characterization provides an effective way of identifying CH stars. The present analysis is aimed at a quantitative assessment of the fraction of CH stars in a sample of stars using a set of spectral classification criteria. The sample consists of 92 objects selected from a collection of candidate Faint High Latitude Carbon stars from the Hamburg/ESO survey. Medium resolution (R ~ 1300) spectra for these objects were obtained using OMR at VBO, Kavalur and HFOSC at HCT, IAO, Hanle, during 2007 - 2009 spanning a wavelength range 3800 - 6800 A. Spectral analysis shows 36 of the 92 objects to be potential CH stars; combined with our earlier studies (Goswami 2005, Goswami et al. 2007) this implies ~ 37% (of 243) objects as the CH fraction. We present spectral descriptions of the newly identified CH star candidates. Estimated effective temperatures, 12C/13C isotopic ratios and their locations on the two colour J-H vs H-K plot are used to support their identification.
We present a new estimate for the binary fraction (the fraction of stars with a single companion) for M dwarfs using a log-normal fit to the orbital separation distribution. We use point estimates of the binary fraction (binary fractions over specifi c separation and companion mass ratio ranges) from four M dwarf surveys sampling distinct orbital radii to fit a log-normal function to the orbital separation distribution. This model, alongside the companion mass ratio distribution given by Reggiani & Meyer (2013), is used to calculate the frequency of companions over the ranges of mass ratio (q) and orbital separation (a) over which the referenced surveys were collectively sensitive - [0.60 $leq$ q $leq$ 1.00] and [0.00 $leq$ a $leq$ 10,000 AU]. This method was then extrapolated to calculate a binary fraction which encompasses the broader ranges of [0.10 $leq$ q $leq$ 1.00] and [0.00 $leq$ a < $infty$ AU]. Finally, the results of these calculations were compared to the binary fractions of other spectral types. The binary fraction over the constrained regions of [0.60 $leq$ q $leq$ 1.00] and [0.00 $leq$ a $leq$ 10,000 AU] was calculated to be $0.229 pm 0.028$. This quantity was then extrapolated over the broader ranges of q (0.10 - 1.00) and a (0.00 - $infty$ AU) and found to be $0.462^{+0.057}_{-0.052}$. We used a conversion factor to estimate the multiplicity fraction from the binary fraction and found the multiplicity fraction over the narrow region of [0.60 $leq$ q $leq$ 1.00] and [0.00 $leq$ a $leq$ 10,000 AU] to be $0.270 pm 0.111$. Lastly, we estimate the multiplicity fractions of FGK, and A stars using the same method (taken over [0.60 $leq$ q $leq$ 1.00] and [0.00 $leq$ a $leq$ 10,000 AU]) and find that the multiplicity fractions of M, FGK, and A stars, when considered over common ranges of q and a, are more similar than generally assumed.
Motivated by the possible existence of other universes, this paper considers the evolution of massive stars with different values for the fundamental constants. We focus on variations in the triple alpha resonance energy and study its effects on the resulting abundances of $^{12}$C, $^{16}$O, and larger nuclei. In our universe, the $0^{+}$ energy level of carbon supports a resonant nuclear reaction that dominates carbon synthesis in stellar cores and accounts for the observed cosmic abundances. Here we define $Delta{E}_R$ to be the change in this resonant energy level, and show how different values affect the cosmic abundances of the intermediate alpha elements. Using the state of the art computational package $MESA$, we carry out stellar evolution calculations for massive stars in the range $M_ast$ = $15-40M_odot$, and for a wide range of resonance energies. We also include both solar and low metallicity initial conditions. For negative $Delta{E}_R$ , carbon yields are increased relative to standard stellar models, and such universes remain viable as long as the production of carbon nuclei remains energetically favorable, and stars remain stable, down to $Delta{E}_Rapprox-300$ keV. For positive $Delta{E}_R$, carbon yields decrease, but significant abundances can be produced for resonance energy increments up to $Delta{E}_Rapprox+500$ keV. Oxygen yields tend to be anti-correlated with those of carbon, and the allowed range in $Delta{E}_R$ is somewhat smaller. We also present yields for neon, magnesium, and silicon. With updated stellar evolution models and a more comprehensive survey of parameter space, these results indicate that the range of viable universes is larger than suggested by earlier studies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا