ﻻ يوجد ملخص باللغة العربية
Deep convolutional neural networks have become the gold standard for image recognition tasks, demonstrating many current state-of-the-art results and even achieving near-human level performance on some tasks. Despite this fact it has been shown that their strong generalisation qualities can be fooled to misclassify previously correctly classified natural images and give erroneous high confidence classifications to nonsense synthetic images. In this paper we extend that work, by presenting a straightforward way to perturb an image in such a way as to cause it to acquire any other label from within the dataset while leaving this perturbed image visually indistinguishable from the original.
Deep learning has outperformed other machine learning algorithms in a variety of tasks, and as a result, it has become more and more popular and used. However, as other machine learning algorithms, deep learning, and convolutional neural networks (CN
Evolutionary deep intelligence has recently shown great promise for producing small, powerful deep neural network models via the synthesis of increasingly efficient architectures over successive generations. Despite recent research showing the effica
A recent paper by Gatys et al. describes a method for rendering an image in the style of another image. First, they use convolutional neural network features to build a statistical model for the style of an image. Then they create a new image with th
Deep convolutional neural networks (ConvNets) of 3-dimensional kernels allow joint modeling of spatiotemporal features. These networks have improved performance of video and volumetric image analysis, but have been limited in size due to the low memo
Convolutional neural networks (CNNs) have made great breakthroughs in 2D computer vision. However, the irregular structure of meshes makes it hard to exploit the power of CNNs directly. A subdivision surface provides a hierarchical multi-resolution s