ﻻ يوجد ملخص باللغة العربية
We have mapped cold atomic gas in 21cm line HI self-absorption (HISA) at arcminute resolution over more than 90% of the Milky Ways disk. To probe the formation of H2 clouds, we have compared our HISA distribution with CO J=1-0 line emission. Few HISA features in the outer Galaxy have CO at the same position and velocity, while most inner-Galaxy HISA has overlapping CO. But many apparent inner-Galaxy HISA-CO associations can be explained as chance superpositions, so most inner-Galaxy HISA may also be CO-free. Since standard equilibrium cloud models cannot explain the very cold HI in many HISA features without molecules being present, these clouds may instead have significant CO-dark H2.
The Magellanic Clouds (MCs) offer an outstanding variety of young stellar associations, in which large samples of low-mass stars (with masses less than 1 solar mass) currently in the act of formation can be resolved and explored sufficiently with the
The thermal emission of dust grains is a powerful tool for probing cold, dense regions of molecular gas in the ISM, and so constraining dust properties is key to obtaining accurate measurements of dust mass and temperature. By placing constraints on
The cold molecular gas in contemporary galaxies is structured in discrete cloud complexes. These giant molecular clouds (GMCs), with $10^4$-$10^7$ solar masses and radii of 5-100 parsecs, are the seeds of star formation. Highlighting the molecular ga
One of the surprises of the Herschel mission was the detection of ArH+ towards the Crab Nebula in emission and in absorption towards strong Galactic background sources. Although these detections were limited to the first quadrant of the Galaxy, the e
We describe a weak lensing view of the downsizing of star forming galaxies based on cross correlating a weak lensing ($kappa$) map with a predicted map constructed from a redshift survey. Moderately deep and high resolution images with Subaru/Hyper S