ترغب بنشر مسار تعليمي؟ اضغط هنا

An Overview of Inside-Out Planet Formation

241   0   0.0 ( 0 )
 نشر من قبل Jonathan C. Tan
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Kepler-discovered Systems with Tightly-packed Inner Planets (STIPs), typically with several planets of Earth to super-Earth masses on well-aligned, sub-AU orbits may host the most common type of planets, including habitable planets, in the Galaxy. They pose a great challenge for planet formation theories, which fall into two broad classes: (1) formation further out followed by inward migration; (2) formation in situ, in the very inner regions of the protoplanetary disk. We review the pros and cons of these classes, before focusing on a new theory of sequential in situ formation from the inside-out via creation of successive gravitationally unstable rings fed from a continuous stream of small (~cm-m size) pebbles, drifting inward via gas drag. Pebbles first collect at the pressure trap associated with the transition from a magnetorotational instability (MRI)-inactive (dead zone) region to an inner, MRI-active zone. A pebble ring builds up that begins to dominate the local mass surface density of the disk and spawns a planet. The planet continues to grow, most likely by pebble accretion, until it becomes massive enough to isolate itself from the accretion flow via gap opening. This reduces the local gas density near the planet, leading to enhanced ionization and a retreat of the dead zone inner boundary. The process repeats with a new pebble ring gathering at the new pressure maximum associated with this boundary. We discuss the theorys predictions for planetary masses, relative mass scalings with orbital radius, and minimum orbital separations, and their comparison with observed systems. Finally, we discuss open questions, including potential causes of diversity of planetary system architectures, i.e., STIPs versus Solar System analogs.



قيم البحث

اقرأ أيضاً

Inside-Out Planet Formation (IOPF; Chatterjee & Tan 2014, hereafter CT14) is a scenario for sequential in situ planet formation at the pressure traps of retreating dead zone inner boundaries (DZIBs) motivated to explain the many systems with tightly packed inner planets (STIPs) discovered by Kepler. The scenario involves build-up of a pebble-dominated protoplanetary ring, supplied by radial drift of pebbles from the outer disk. It may also involve further build-up of planetary masses to gap-opening scales via continued pebble accretion. Here we study radial drift & growth of pebbles delivered to the DZIB in fiducial IOPF disk models.
71 - Philip J. Armitage 2018
The initial conditions, physics, and outcome of planet formation are now constrained by detailed observations of protoplanetary disks, laboratory experiments, and the discovery of thousands of extrasolar planetary systems. These developments have bro adened the range of processes that are considered important in planet formation, to include disk turbulence, radial drift, planet migration, and pervasive post-formation dynamical evolution. The N-body collisional growth of planetesimals and protoplanets, and the physics of planetary envelopes - key ingredients of the classical model - remain central. I provide an overview of the current status of planet formation theory, and discuss how it connects to observations.
The large population of Earth to super-Earth sized planets found very close to their host stars has motivated consideration of $in$ $situ$ formation models. In particular, Inside-Out Planet Formation is a scenario in which planets coalesce sequential ly in the disk, at the local gas pressure maximum near the inner boundary of the dead zone. The pressure maximum arises from a decline in viscosity, going from the active innermost disk (where thermal ionization of alkalis yields high viscosities via the magneto-rotational instability (MRI)) to the adjacent dead zone (where the MRI is quenched). Previous studies of the pressure maximum, based on $alpha$-disk models, have assumed ad hoc values for the viscosity parameter $alpha$ in the active zone, ignoring the detailed physics of the MRI. Here we explicitly couple the MRI criteria to the $alpha$-disk equations, to find steady-state (constant accretion rate) solutions for the disk structure. We consider the effects of both Ohmic and ambipolar resistivities, and find solutions for a range of disk accretion rates ($dot{M}$ = $10^{-10}$ - $10^{-8}$ ${rm M}_{odot}$/yr), stellar masses ($M_{ast}$ = 0.1 - 1 ${rm M}_{odot}$), and fiducial values of the $non$-MRI $alpha$-viscosity in the dead zone ($alpha_{rm {DZ}} = 10^{-5}$ - $10^{-3}$). We find that: (1) A midplane pressure maximum forms radially $outside$ the inner boundary of the dead zone; (2) Hall resistivity dominates near the midplane in the inner disk, which may explain why close-in planets do $not$ form in $sim$50% of systems; (3) X-ray ionization can be competitive with thermal ionization in the inner disk, because of the low surface density there in steady-state; and (4) our inner disk solutions are viscously unstable to surface density perturbations.
Our galaxy is full with planets. We now know that planets and planetary systems are diverse and come with different sizes, masses and compositions, as well as various orbital architectures. Although there has been great progress in understanding plan et formation in the last couple of decades, both observationally and theoretically, several fundamental questions remain unsolved. This might not be surprising given the complexity of the process that includes various physical and chemical processes, and spans huge ranges of length-scales, masses, and timescales. In addition, planet formation cannot be directly observed but has to be inferred by gluing together different pieces of information into one consistent picture. How do planets form? remains a fundamental question in modern astrophysics. In this review we list some of the key open questions in planet formation theory as well as the challenges and upcoming opportunities.
Planet migration in protoplanetary discs plays an important role in the longer term evolution of planetary systems, yet we currently have no direct observational test to determine if a planet is migrating in its gaseous disc. We explore the formation and evolution of dust rings - now commonly observed in protoplanetary discs by ALMA - in the presence of relatively low mass (12-60 Earth masses) migrating planets. Through two dimensional hydrodynamical simulations using gas and dust we find that the importance of perturbations in the pressure profile interior and exterior to the planet varies for different particle sizes. For small sizes a dust enhancement occurs interior to the planet, whereas it is exterior to it for large particles. The transition between these two behaviours happens when the dust drift velocity is comparable to the planet migration velocity. We predict that an observational signature of a migrating planet consists of a significant outwards shift of an observed midplane dust ring as the wavelength is increased.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا