ﻻ يوجد ملخص باللغة العربية
The Solar System contains a population of dust and small particles originating from asteroids, comets, and other bodies. These particles have been studied using a number of techniques ranging from in-situ satellite detectors to analysis of lunar microcraters to ground-based observations of zodiacal light. In this paper, we describe an approach for using the LISA Pathfinder (LPF) mission as an instrument to detect and characterize the dynamics of dust particles in the vicinity of Earth-Sun L1. Launching in late 2015, LPF is a dedicated technology demonstrator mission that will validate several key technologies for a future space-based gravitational-wave observatory. The primary science instrument aboard LPF is a precision accelerometer which we show will be capable of sensing discrete momentum impulses as small as $4times 10^{-8},textrm{N}cdottextrm{s}$. We then estimate the rate of such impulses resulting from impacts of micrometeoroids based on standard models of the micrometeoroid environment in the inner solar system. We find that LPF may detect dozens to hundreds of individual events corresponding to impacts of particles with masses $> 10^{-9},$g during LPFs roughly six-month science operations phase in a $5times 10^5,textrm{km}$ by $8times 10^5,textrm{km}$ Lissajous orbit around L1. In addition, we estimate the ability of LPF to characterize individual impacts by measuring quantities such as total momentum transferred, direction of impact, and location of impact on the spacecraft. Information on flux and direction provided by LPF may provide insight as to the nature and origin of the individual impact and help constrain models of the interplanetary dust complex in general. Additionally, this direct in-situ measurement of micrometeoroid impacts will be valuable to designers of future spacecraft targeting the environment around L1.
The zodiacal dust complex, a population of dust and small particles that pervades the Solar System, provides important insight into the formation and dynamics of planets, comets, asteroids, and other bodies. Here we present a new set of data obtained
Since the 2017 Nobel Prize in Physics was awarded for the observation of gravitational waves, it is fair to say that the epoch of gravitational wave astronomy (GWs) has begun. However, a number of interesting sources of GWs can only be observed from
The main goal of the LISA Pathfinder (LPF) mission is to fully characterize the acceleration noise models and to test key technologies for future space-based gravitational-wave observatories similar to the eLISA concept. The data analysis team has de
The LISA Pathfinder mission will demonstrate the technology of drag-free test masses for use as inertial references in future space-based gravitational wave detectors. To accomplish this, the Pathfinder spacecraft will perform drag-free flight about
We present the biological results of some experiments performed in the Padua simulators of planetary environments, named LISA, used to study the limit of bacterial life on the planet Mars. The survival of Bacillus strains for some hours in Martian environment is shortly discussed.