ترغب بنشر مسار تعليمي؟ اضغط هنا

Precise Prediction of the Dark Matter Relic Density within the MSSM

300   0   0.0 ( 0 )
 نشر من قبل Julia Harz
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

With the latest Planck results the dark matter relic density is determined to an unprecedented precision. In order to reduce current theoretical uncertainties in the dark matter relic density prediction, we have calculated next-to-leading order SUSY-QCD corrections to neutralino (co)annihilation processes including Coulomb enhancement effects. We demonstrate that these corrections can have significant impact on the cosmologically favoured MSSM parameter space and are thus of general interest for parameter studies and global fits.

قيم البحث

اقرأ أيضاً

We consider the long-range effect of the Higgs on the density of thermal-relic dark matter. While the electroweak gauge boson and gluon exchange have been previously studied, the Higgs is typically thought to mediate only contact interactions. We sho w that the Sommerfeld enhancement due to a 125 GeV Higgs can deplete TeV-scale dark matter significantly, and describe how the interplay between the Higgs and other mediators influences this effect. We discuss the importance of the Higgs enhancement in the Minimal Supersymmetric Standard Model, and its implications for experiments.
We have recently examined a large number of points in the parameter space of the phenomenological MSSM, the 19-dimensional parameter space of the CP-conserving MSSM with Minimal Flavor Violation. We determined whether each of these points satisfied e xisting experimental and theoretical constraints. This analysis provides insight into general features of the MSSM without reference to a particular SUSY breaking scenario or any other assumptions at the GUT scale. This study opens up new possibilities for SUSY phenomenology both in colliders and in astrophysical experiments. Here we shall discuss the implications of this analysis relevant to the study of dark matter.
We present a new mechanism for producing the correct relic abundance of dark photon dark matter over a wide range of its mass, extending down to $10^{-20},mathrm{eV}$. The dark matter abundance is initially stored in an axion which is misaligned from its minimum. When the axion starts oscillating, it efficiently transfers its energy into dark photons via a tachyonic instability. If the dark photon mass is within a few orders of magnitude of the axion mass, $m_{gamma}/m_a = {cal O}(10^{-3} - 1)$, then dark photons make up the dominant form of dark matter today. We present a numerical lattice simulation for a benchmark model that explicitly realizes our mechanism. This mechanism firms up the motivation for a number of experiments searching for dark photon dark matter.
83 - J. Harz , B. Herrmann , M. Klasen 2016
For particle physics observables at colliders such as the LHC at CERN, it has been common practice for many decades to estimate the theoretical uncertainty by studying the variations of the predicted cross sections with a priori unpredictable scales. In astroparticle physics, this has so far not been possible, since most of the observables were calculated at Born level only, so that the renormalization scheme and scale dependence could not be studied in a meaningful way. In this paper, we present the first quantitative study of the theoretical uncertainty of the neutralino dark matter relic density from scheme and scale variations. We first explain in detail how the renormalization scale enters the tree-level calculations through coupling constants, masses and mixing angles. We then demonstrate a reduction of the renormalization scale dependence through one-loop SUSY-QCD corrections in many different dark matter annihilation channels and enhanced perturbative stability of a mixed on-shell/$bar{rm DR}$ renormalization scheme over a pure $bar{rm DR}$ scheme in the top-quark sector. In the stop-stop annihilation channel, the Sommerfeld enhancement and its scale dependence are shown to be of particular importance. Finally, the impact of our higher-order SUSY-QCD corrections and their scale uncertainties are studied in three typical scenarios of the phenomenological Minimal Supersymmetric Standard Model with eleven parameters (pMSSM-11). We find that the theoretical uncertainty is reduced in many cases and can become comparable to the size of the experimental one in some scenarios.
We discuss a simple model of thermal relic dark matter whose mass can be much larger than the so-called unitarity limit on the mass of point-like particle dark matter. The model consists of new strong dynamics with one flavor of fermions in the funda mental representation which is much heavier than the dynamical scale of the new strong dynamics. Dark matter is identified with the lightest baryonic hadron of the new dynamics. The baryonic hadrons annihilate into the mesonic hadrons of the new strong dynamics when they have large radii. Resultantly, thermal relic dark matter with a mass in the PeV range is possible.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا