ترغب بنشر مسار تعليمي؟ اضغط هنا

Time-resolved electron beam diagnostics with sub-femtosecond resolution

96   0   0.0 ( 0 )
 نشر من قبل Guanglei Wang
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In modern high-gain free-electron lasers, ultra-fast photon pulses designed for studying chemical, atomic and biological systems are generated from a serial of behaviors of high-brightness electron beam at the time-scale ranging from several hundred femtoseconds to sub-femtosecond. Currently, radiofrequency transverse deflectors are widely used to provide reliable, single-shot electron beam phase space diagnostics, with a temporal resolution of femtosecond. Here, we show that the time resolution limitations caused by the intrinsic beam size in transverse deflectors, can be compensated with specific transverse-to-longitudinal coupling elements. For the purpose, an undulator with transverse gradient field is introduced before the transverse deflector. With this technique, a resolution of less than 1fs root mean square has been theoretically demonstrated for measuring the longitudinal profile and/or the micro-bunching of the electron bunch.



قيم البحث

اقرأ أيضاً

We propose and demonstrate a novel method to produce few-femtosecond electron beam with relatively low timing jitter. In this method a relativistic electron beam is compressed from about 150 fs (rms) to about 7 fs (rms, upper limit) with the wakefiel d at THz frequency produced by a leading drive beam in a dielectric tube. By imprinting the energy chirp in a passive way, we demonstrate through laser-driven THz streaking technique that no additional timing jitter with respect to an external laser is introduced in this bunch compression process, a prominent advantage over the conventional method using radio-frequency bunchers. We expect that this passive bunching technique may enable new opportunities in many ultrashort-beam based advanced applications such as ultrafast electron diffraction and plasma wakefield acceleration.
We propose and demonstrate a novel method to reduce the pulse width and timing jitter of a relativistic electron beam through THz-driven beam compression. In this method the longitudinal phase space of a relativistic electron beam is manipulated by a linearly polarized THz pulse in a dielectric tube such that the bunch tail has a higher velocity than the bunch head, which allows simultaneous reduction of both pulse width and timing jitter after passing through a drift. In this experiment, the beam is compressed by more than a factor of four from 130 fs to 28 fs with the arrival time jitter also reduced from 97 fs to 36 fs, opening up new opportunities in using pulsed electron beams for studies of ultrafast dynamics. This technique extends the well known rf buncher to the THz frequency and may have a strong impact in accelerator and ultrafast science facilities that require femtosecond electron beams with tight synchronization to external lasers.
316 - Pengfei Zhu , H. Berger , J. Cao 2013
We report the experimental demonstration of femtosecond electron diffraction using high-brightness MeV electron beams. High-quality, single-shot electron diffraction patterns for both polycrystalline aluminum and single-crystal 1T-TaS2 are obtained u tilizing a 5 femto-Coulomb (~3x10^4 electrons) pulse of electrons at 2.8 MeV. The high quality of the electron diffraction patterns confirm that electron beam has a normalized emittance of ~50 nm-rad. The corresponding transverse and longitudinal coherence length are ~11 nm and ~2.5 nm, respectively. The timing jitter between the pump laser and probe electron beam was found to be ~ 100 fs (rms). The temporal resolution is demonstrated by observing the evolution of Bragg and superlattice peaks of 1T-TaS2 following an 800 nm optical pump and was found to be 130 fs. Our results demonstrate the advantages of MeV electron diffraction: such as longer coherent lengths, large scattering cross-section and larger signal-to-noise ratio, and the feasibility of ultimately realizing 10 fs time-resolved electron diffraction.
With electron beam durations down to femtoseconds and sub-femtoseconds achievable in current state-of-the-art accelerators, longitudinal bunch length diagnostics with resolution at the attosecond level are required. In this paper, we present such a n ovel measurement device which combines a high power laser modulator with an RF deflecting cavity in the orthogonal direction. While the laser applies a strong correlated angular modulation to a beam, the RF deflector ensures the full resolution of this streaking effect across the bunch hence recovering the temporal beam profile with sub-femtosecond resolution. Preliminary measurements to test the key components of this concept were carried out at the Accelerator Test Facility (ATF) at Brookhaven National Laboratory recently, the results of which are presented and discussed here. Moreover, a possible application of the technique for novel accelerator schemes is examined based on simulations with the particle-tracking code elegant and our beam profile reconstruction tool.
A design study of the diagnostics of a high brightness linac, based on X-band structures, and a plasma accelerator stage, has been delivered in the framework of the EuPRAXIA@SPARC_LAB project. In this paper, we present a conceptual design of the prop osed diagnostics, using state of the art systems and new and under development devices. Single shot measurements are preferable for plasma accelerated beams, including emittance, while $mu$m level and fs scale beam size and bunch length respectively are requested. The needed to separate the driver pulse (both laser or beam) from the witness accelerated bunch imposes additional constrains for the diagnostics. We plan to use betatron radiation for the emittance measurement just at the end of the plasma booster, while other single-shot methods must be proven before to be implemented. Longitudinal measurements, being in any case not trivial for the fs level bunch length, seem to have already a wider range of possibilities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا