ﻻ يوجد ملخص باللغة العربية
The volume density of a hyperbolic link is defined as the ratio of hyperbolic volume to crossing number. We study its properties and a closely-related invariant called the determinant density. It is known that the sets of volume densities and determinant densities of links are dense in the interval [0,v_{oct}]. We construct sequences of alternating knots whose volume and determinant densities both converge to any x in [0,v_{oct}]. We also investigate the distributions of volume and determinant densities for hyperbolic rational links, and establish upper bounds and density results for these invariants.
We prove that there exists a universal constant $c$ such that any closed hyperbolic 3-manifold admits a triangulation of treewidth at most $c$ times its volume. The converse is not true: we show there exists a sequence of hyperbolic 3-manifolds of bo
In this paper we apply the twisted Alexander polynomial to study the fibering and genus detecting problems for oriented links. In particular we generalize a conjecture of Dunfield, Friedl and Jackson on the torsion polynomial of hyperbolic knots to h
We present explicit geometric decompositions of the complement of tiling links, which are alternating links whose projection graphs are uniform tilings of the 2-sphere, the Euclidean plane or the hyperbolic plane. This requires generalizing the angle
Weakly generalised alternating knots are knots with an alternating projection onto a closed surface in a compact irreducible 3-manifold, and they share many hyperbolic geometric properties with usual alternating knots. For example, usual alternating
Integral foliated simplicial volume is a version of simplicial volume combining the rigidity of integral coefficients with the flexibility of measure spaces. In this article, using the language of measure equivalence of groups we prove a proportional