ترغب بنشر مسار تعليمي؟ اضغط هنا

New Phases and Dissociation-Recombination of Hydrogen Deuteride to 3.4 Megabar

91   0   0.0 ( 0 )
 نشر من قبل Isaac Silvera
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present infrared absorption studies of solid hydrogen deuteride to pressures as high as 3.4 megabar in a diamond anvil cell and temperatures in the range 5 to 295 K. Above 198 GPa the sample transforms to a mixture of HD ,H2 and D2, interpreted as a process of dissociation and recombination. Three new phases-lines are observed, two of which differ remarkably from those of the high-pressure homonuclear species, but none are metallic. The time-dependent spectral changes are analyzed to determine the molecular concentrations as a function of time; the nucleon exchange achieves steady state concentrations in ~20 hours at ~200 GPa.

قيم البحث

اقرأ أيضاً

We study the laser control of magnon topological phases induced by the Aharonov-Casher effect in insulating antiferromagnets (AFs). Since the laser electric field can be considered as a time-periodic perturbation, we apply the Floquet theory and perf orm the inverse frequency expansion by focusing on the high frequency region. Using the obtained effective Floquet Hamiltonian, we study nonequilibrium magnon dynamics away from the adiabatic limit and its effect on topological phenomena. We show that a linearly polarized laser can generate helical edge magnon states and induce the magnonic spin Nernst effect, whereas a circularly polarized laser can generate chiral edge magnon states and induce the magnonic thermal Hall effect. In particular, in the latter, we find that the direction of the magnon chiral edge modes and the resulting thermal Hall effect can be controlled by the chirality of the circularly polarized laser through the change from the left-circular to the right-circular polarization. Our results thus provide a handle to control and design magnon topological properties in the insulating AF.
In recent years there has been intense experimental activity to observe solid metallic hydrogen. Wigner and Huntington predicted that under extreme pressures insulating molecular hydrogen would dissociate and transition to atomic metallic hydrogen. R ecently Dalladay-Simpson, Howie, and Gregoryanz reported a phase transition to an insulating phase in molecular hydrogen at a pressure of 325 GPa and 300 K. Because of its scientific importance we have scrutinized their experimental evidence to determine if their claim is justified. Based on our analysis, we conclude that they have misinterpreted their data: there is no evidence for a phase transition at 325 GPa.
We report the detection of interstellar hydrogen deuteride (HD) toward the supernova remnant IC443, and the tentative detection of HD toward the Herbig Haro objects HH54 and HH7 and the star forming region GGD37 (Cepheus A West). Our detections are b ased upon spectral line mapping observations of the R(3) and R(4) rotational lines of HD, at rest wavelengths of 28.502 and 23.034 micron respectively, obtained using the Infrared Spectrograph onboard the Spitzer Space Telescope. The HD R(4)/R(3) line intensity ratio promises to be a valuable probe of the gas pressure in regions where it can be observed. The derived HD/H2 abundance ratios are 1.19(+0.35/-0.24)E-5, 1.80(+0.54/-0.32)E-5, and 1.41(+0.46/-0.33)E-5 respectively (68.3% confidence limits, based upon statistical errors alone) for IC443 (clump C), HH54, and HH7. If HD is the only significant reservoir of gas-phase deuterium in these sources, the inferred HD/H2 ratios are all consistent with a gas-phase elemental abundance [n(D)/n(H)](gas) ~ 7.5E-6, a factor 2 - 3 below the values obtained previously from observations of atomic deuterium in the local bubble and the Galactic halo. However, similarly low gas-phase deuterium abundances have been inferred previously for molecular gas clouds in the Orion region, and in atomic clouds along sight-lines within the Galactic disk to stars more distant than 500 pc from the Sun.
We reported the first observation of metallic hydrogen (MH) in the low temperature limit at a pressure of ~495 GPa in an article published in Science (1). This transition was first predicted by Wigner and Huntington (WE) over 80 years ago (2) at a pr essure of ~25 GPa. In recent decades it became clear that the required pressure for metallization was far greater, in the 400-500 GPa range. Until now the observation of the WE transition in diamond anvil cells (DACs) has been prevented by one problem: the diamonds break before a sufficiently high pressure has been achieved. This has driven the high-pressure community to improve DACs and experimental methods to understand and overcome the conditions that limited the performance of diamonds and the pressure. In our experiment, with increasing pressure, we observed a clear transition from a transparent sample of solid molecular hydrogen to an opaque black sample to a shiny reflective sample of MH, as determined by reflectance measurements. There is no doubt that MH was produced at the highest pressures. Yet there have been criticisms concerning the pressure that was achieved, the possibility that the 50 nm alumina layer, deposited on diamonds to inhibit diffusion of hydrogen, might be transformed to a metal and be responsible for the reflectance, and analysis of the reflectance. Here we respond to the criticisms posted on the condensed matter arXiv by Loubeyre, Occelli, and Dumas (LOD)- arXiv:1702.07192, Eremets and Drozdov (ED)- arXiv:1702.05125, and Goncharov and Struzhkin (GS)- arXiv:1702.04246.
In a recently published article [1], Ranga P. Dias & Isaac F. Silvera have reported the visual evidence of metallic hydrogen concomitantly with its characterization at a pressure of 495 GPa and low temperatures. We have expressed serious doubts of su ch a conclusion when interviewed to comment on this publication [2,3]. In the following comment, we would like to detail the reasons, based on experimental evidences obtained by us and by other groups worldwide that sustain our skepticism. We have identified two main flaws in this paper, as discussed in details below: the pressure is largely overestimated; the origin of the sample reflectivity and the analysis of the reflectance can be seriously questioned.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا