ﻻ يوجد ملخص باللغة العربية
The textit{Spitzer} SAGE survey has allowed the identification and analysis of significant samples of Young Stellar Object (YSO) candidates in the Large Magellanic Cloud (LMC). However the angular resolution of textit{Spitzer} is relatively poor meaning that at the distance of the LMC, it is likely that many of the textit{Spitzer} YSO candidates in fact contain multiple components. We present high resolution textit{K}-band integral field spectroscopic observations of the three most prominent massive YSO candidates in the N113 H,{sc ii} region using VLT/SINFONI. We have identified six textit{K}-band continuum sources within the three textit{Spitzer} sources and we have mapped the morphology and velocity fields of extended line emission around these sources. Br$gamma$, He,{sc i} and H$_2$ emission is found at the position of all six textit{K}-band sources; we discuss whether the emission is associated with the continuum sources or whether it is ambient emission. H$_2$ emission appears to be mostly ambient emission and no evidence of CO emission arising in the discs of YSOs has been found. We have mapped the centroid velocities of extended Br$gamma$ emission and He {sc i} emission and found evidence of two expanding compact H,{sc ii} regions. One source shows compact and strong H$_2$ emission suggestive of a molecular outflow. The diversity of spectroscopic properties observed is interpreted in the context of a range of evolutionary stages associated with massive star formation.
The process of massive star ($Mgeq8~M_odot$) formation is still poorly understood. Observations of massive young stellar objects (MYSOs) are challenging due to their rarity, short formation timescale, large distances, and high circumstellar extinctio
We present Herschel Space Observatory Photodetector Array Camera and Spectrometer (PACS) and Spectral and Photometric Imaging Receiver Fourier Transform Spectrometer (SPIRE FTS) spectroscopy of a sample of twenty massive Young Stellar Objects (YSOs)
We present spectroscopic observations of a sample of 15 embedded young stellar objects (YSOs) in the Large Magellanic Cloud (LMC). These observations were obtained with the Spitzer Infrared Spectrograph (IRS) as part of the SAGE-Spec Legacy program.
The aim of this study is to understand the chemical conditions of ices around embedded young stellar objects (YSOs) in the metal-poor Large Magellanic Cloud (LMC). We performed near-infrared (2.5-5 micron) spectroscopic observations toward 12 massive
Studies of young stellar objects (YSOs) in the Galaxy have found that a significant fraction exhibit photometric variability. However, no systematic investigation has been conducted on the variability of extragalactic YSOs. Here we present the first