ﻻ يوجد ملخص باللغة العربية
In this talk we review results from studies with unconventional many hadron systems containing mesons: systems with two mesons and one baryon, three mesons, some novel systems with two baryons and one meson, and finally systems with many vector mesons, up to six, with their spins aligned forming states of increasing spin. We show that in many cases one has experimental counterparts for the states found, while in some other cases they remain as predictions, which we suggest to be searched in BESIII, Belle, LHCb, FAIR and other facilities.
In this talk we show recent developments on few body systems involving mesons. We report on an approach to Faddeev equations using chiral unitary dynamics, where an explicit cancellation of the two body off shell amplitude with three body forces st
To obtain the equation of state of quark matter and construct hybrid stars, we calculate the thermodynamic potential in the three-flavor Nambu-Jona-Lasinio model including the tensor-type four-point interaction and the Kobayashi-Maskawa-t Hooft inter
We present a complete calculation of nucleon-deuteron scattering as well as ground and low-lying excited states of light nuclei in the mass range A=3-16 up through next-to-next-to-leading order in chiral effective field theory using semilocal coordin
The decays of light vector mesons into three pseudoscalar mesons are calculated to leading order in the recently proposed counting scheme that is based on the hadrogenesis conjecture. Fully differential as well as integrated decay widths are presente
We consider a system composed of two identical light quarks ($qq$) and two identical antiquarks ($bar Qbar Q$) that can be linked either as two mesons or as a tetraquark, incorporating quantum correlations between identical particles and an effective