ﻻ يوجد ملخص باللغة العربية
Given a network with attributed edges, how can we identify anomalous behavior? Networks with edge attributes are commonplace in the real world. For example, edges in e-commerce networks often indicate how users rated products and services in terms of number of stars, and edges in online social and phonecall networks contain temporal information about when friendships were formed and when users communicated with each other -- in such cases, edge attributes capture information about how the adjacent nodes interact with other entities in the network. In this paper, we aim to utilize exactly this information to discern suspicious from typical node behavior. Our work has a number of notable contributions, including (a) formulation: while most other graph-based anomaly detection works use structural graph connectivity or node information, we focus on the new problem of leveraging edge information, (b) methodology: we introduce EdgeCentric, an intuitive and scalable compression-based approach for detecting edge-attributed graph anomalies, and (c) practicality: we show that EdgeCentric successfully spots numerous such anomalies in several large, edge-attributed real-world graphs, including the Flipkart e-commerce graph with over 3 million product reviews between 1.1 million users and 545 thousand products, where it achieved 0.87 precision over the top 100 results.
Many social and economic systems can be represented as attributed networks encoding the relations between entities who are themselves described by different node attributes. Finding anomalies in these systems is crucial for detecting abuses such as c
Recent years have witnessed an upsurge of interest in the problem of anomaly detection on attributed networks due to its importance in both research and practice. Although various approaches have been proposed to solve this problem, two major limitat
Attributed networks are ubiquitous since a network often comes with auxiliary attribute information e.g. a social network with user profiles. Attributed Network Embedding (ANE) has recently attracted considerable attention, which aims to learn unifie
Dynamic networks, also called network streams, are an important data representation that applies to many real-world domains. Many sets of network data such as e-mail networks, social networks, or internet traffic networks are best represented by a dy
Deep generative models (DGMs) have achieved remarkable advances. Semi-supervised variational auto-encoders (SVAE) as a classical DGM offer a principled framework to effectively generalize from small labelled data to large unlabelled ones, but it is d