ﻻ يوجد ملخص باللغة العربية
Scalas type system unifies ML modules, object-oriented, and functional programming. The Dependent Object Types (DOT) family of calculi has been proposed as a new foundation for Scala and similar languages. Unfortunately, it is not clear how DOT relates to any well-known type systems, and type soundness has only been established for very restricted subsets. In fact, important Scala features are known to break at least one key metatheoretic property such as environment narrowing or subtyping transitivity, which are usually required for a type soundness proof. First, and, perhaps surprisingly, we show how rich DOT calculi can still be proved sound. The key insight is that narrowing and subtyping transitivity only need to hold for runtime objects, but not for code that is never executed. Alas, the dominant method of proving type soundness, Wright and Felleisens syntactic approach, is based on term rewriting, which does not a priori make a distinction between runtime and type assignment time. Second, we demonstrate how type soundness can be proved for advanced, polymorphic, type systems with respect to high-level, definitional interpreters, implemented in Coq. We present the first mechanized soundness proof in this style for System F<: and several extensions, including mutable references. Our proofs use only simple induction: another surprising result, as the combination of big-step semantics, mutable references, and polymorphism is commonly believed to require co-inductive proof techniques. Third, we show how DOT-like calculi emerge as generalizations of F<:, exposing a rich design space of calculi with path-dependent types which we collectively call System D. Armed with insights from the definitional interpreter semantics, we also show how equivalent small-step semantics and soundness proofs in Wright-Felleisen-style can be derived for these systems.
Nondeterminism in scheduling is the cardinal reason for difficulty in proving correctness of concurrent programs. A powerful proof strategy was recently proposed [6] to show the correctness of such programs. The approach captured data-flow dependenci
Coroutines are a general control flow construct that can eliminate control flow fragmentation inherent in event-driven programs, and are still missing in many popular languages. Coroutines with snapshots are a first-class, type-safe, stackful corouti
We propose a general proof technique to show that a predicate is sound, that is, prevents stuck computation, with respect to a big-step semantics. This result may look surprising, since in big-step semantics there is no difference between non-termina
Verifying partial (i.e., termination-insensitive) equivalence of programs has significant practical applications in software development and education. Conventional equivalence verifiers typically rely on a combination of given relational summaries a
The automatic verification of programs that maintain unbounded low-level data structures is a critical and open problem. Analyzers and verifiers developed in previous work can synthesize invariants that only describe data structures of heavily restri