ﻻ يوجد ملخص باللغة العربية
Rather than creating yet another network controller which provides a framework in a specific (potentially new) programming language and runs as a monolithic application, in this paper we extend an existing operating system and leverage its software ecosystem in order to serve as a practical SDN controller. This paper introduces yanc, a controller platform for software-defined networks which exposes the network configuration and state as a file system, enabling user and system applications to interact through standard file I/O, and to easily take advantage of the tools available on the host operating system. In yanc, network applications are separate processes, are provided by multiple sources, and may be written in any language. Applications benefit from common and powerful technologies such as the virtual file system (VFS) layer, which we leverage to layer a distributed file system on top of, and Linux namespaces, which we use to isolate applications with different views (e.g., slices). In this paper we present the goals and design of yanc. Our initial prototype is built with the FUSE file system in user space on Linux and has been demonstrated with a simple static flow pusher application. Effectively, we are making Linux the network operating system.
Aiming at the local overload of multi-controller deployment in software-defined networks, a load balancing mechanism of SDN controller based on reinforcement learning is designed. The initial paired migrate-out domain and migrate-in domain are obtain
We show that given a desired closed-loop response for a system, there exists an affine subspace of controllers that achieve this response. By leveraging the existence of this subspace, we are able to separate controller design from closed-loop design
For many, this is no longer a valid question and the case is considered settled with SDN/NFV (Software Defined Networking/Network Function Virtualization) providing the inevitable innovation enablers solving many outstanding management issues regardi
Software Defined Networking (SDN) is a promising approach for improving the performance and manageability of future network architectures. However, little work has gone into using SDN to improve the performance and manageability of existing networks
In this work, we propose online traffic engineering as a novel approach to detect and mitigate an emerging class of stealthy Denial of Service (DoS) link-flooding attacks. Our approach exploits the Software Defined Networking (SDN) paradigm, which re