ﻻ يوجد ملخص باللغة العربية
Device-to-device (D2D) communication has seen as a major technology to overcome the imminent wireless capacity crunch and to enable new application services. In this paper, we propose a social-aware approach for optimizing D2D communication by exploiting two layers: the social network and the physical wireless layers. First we formulate the physical layer D2D network according to users encounter histories. Subsequently, we propose an approach, based on the so-called Indian Buffet Process, so as to model the distribution of contents in users online social networks. Given the social relations collected by the Evolved Node B (eNB), we jointly optimize the traffic offloading process in D2D communication. In addition, we give the Chernoff bound and approximated cumulative distribution function (CDF) of the offloaded traffic. In the simulation, we proved the effectiveness of the bound and CDF. The numerical results based on real traces show that the proposed approach offload the traffic of eNBs successfully.
Device-to-device (D2D) communications is seen as a major technology to overcome the imminent wireless capacity crunch and to enable novel application services. In this paper, we propose a novel, social-aware approach for optimizing D2D communications
A constant need to increase the network capacity for meeting the growing demands of the subscribers has led to the evolution of cellular communication networks from the first generation (1G) to the fifth generation (5G). There will be billions of con
In this paper, we develop a comprehensive analytical framework for cache enabled cellular networks overlaid with coordinated device-to-device (D2D) communication. We follow an approach similar to LTE Direct, where the base station (BS) is responsible
Considering the energy-efficient emergency response, subject to a given set of constraints on emergency communication networks (ECN), this article proposes a hybrid device-to-device (D2D) and device-to-vehicle (D2V) network for collecting and transmi
The growing popularity of Internet-of-Things (IoT) has created the need for network-based traffic anomaly detection systems that could identify misbehaving devices. In this work, we propose a lightweight technique, IoT-guard, for identifying maliciou