ﻻ يوجد ملخص باللغة العربية
Broadband quantum memories hold great promise as multiplexing elements in future photonic quantum information protocols. Alkali vapour Raman memories combine high-bandwidth storage, on-demand read-out, and operation at room temperature without collisional fluorescence noise. However, previous implementations have required large control pulse energies and suffered from four-wave mixing noise. Here we present a Raman memory where the storage interaction is enhanced by a low-finesse birefringent cavity tuned into simultaneous resonance with the signal and control fields, dramatically reducing the energy required to drive the memory. By engineering anti-resonance for the anti-Stokes field, we also suppress the four-wave mixing noise and report the lowest unconditional noise floor yet achieved in a Raman-type warm vapour memory, $(15pm2)times10^{-3}$ photons per pulse, with a total efficiency of $(9.5pm0.5)$%.
Photonics is a promising platform for quantum technologies. However, photon sources and two-photon gates currently only operate probabilistically. Large-scale photonic processing will therefore be impossible without a multiplexing strategy to activel
Just as classical information systems require buffers and memory, the same is true for quantum information systems. The potential that optical quantum information processing holds for revolutionising computation and communication is therefore driving
We seek to design experimentally feasible broadband, temporally multiplexed optical quantum memory with near-term applications to telecom bands. Specifically, we devise dispersion compensation for an impedance-matched narrow-band quantum memory by ex
An optical quantum memory is a stationary device that is capable of storing and recreating photonic qubits with a higher fidelity than any classical device. Thus far, these two requirements have been fulfilled in systems based on cold atoms and cryog
When a gain system is coupled to a loss system, the energy usually flows from the gain system to the loss one. We here present a counterintuitive theory for the ground-state cooling of the mechanical resonator in optomechanical system via a gain cavi