ترغب بنشر مسار تعليمي؟ اضغط هنا

Disorder-induced stabilization of the quantum Hall ferromagnet

116   0   0.0 ( 0 )
 نشر من قبل Benjamin Piot A
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on an absolute measurement of the electronic spin polarization of the $ u=1$ integer quantum Hall state. The spin polarization is extracted in the vicinity of $ u=1$ (including at exactly $ u=1$) via resistive NMR experiments performed at different magnetic fields (electron densities), and Zeeman energy configurations. At the lowest magnetic fields, the polarization is found to be complete in a narrow region around $ u=1$. Increasing the magnetic field (electron density) induces a significant depolarization of the system, which we attribute to a transition between the quantum Hall ferromagnet and the Skyrmion glass phase theoretically expected as the ratio between Coulomb interactions and disorder is increased. These observations account for the fragility of the polarization previously observed in high mobility 2D electron gas, and experimentally demonstrate the existence of an optimal amount of disorder to stabilize the ferromagnetic state.



قيم البحث

اقرأ أيضاً

Time-dependent capacitance measurements reveal an unstable phase of electrons in gallium arsenide quantum well that occurs when two Landau levels with opposite spin are brought close to degeneracy by applying a gate voltage. This phase emerges below a critical temperature and displays a peculiar non-equilibrium dynamical evolution. The relaxation dynamics is found to follow a stretched exponential behavior and correlates with hysteresis loops observed by sweeping the magnetic field. These experiments indicate that metastable randomly-distributed magnetic domains are involved in the relaxation process in a way that is equivalently tunable by a change in gate voltage or temperature.
Spin splitting in the integer quantum Hall effect is investigated for a series of Al$_{x}$Ga$_{1-x}$As/GaAs heterojunctions and quantum wells. Magnetoresistance measurements are performed at mK temperature to characterize the electronic density of st ates and estimate the strength of many body interactions. A simple model with no free parameters correctly predicts the magnetic field required to observe spin splitting confirming that the appearance of spin splitting is a result of a competition between the disorder induced energy cost of flipping spins and the exchange energy gain associated with the polarized state. In this model, the single particle Zeeman energy plays no role, so that the appearance of this quantum Hall ferromagnet in the highest occupied Landau level can also be thought of as a magnetic field induced Stoner transition.
Coupled quantum Hall edge channels show intriguing non-trivial modes, for example, charge and neutral modes at Landau level filling factors 2 and 2/3. We propose an appropriate and effective model with Coulomb interaction and disorder-induced tunneli ng characterized by coupling capacitances and tunneling conductances, respectively. This model explains how the transport eigenmodes, within the interaction- and disorder-dominated regimes, change with the coupling capacitance, tunneling conductance, and measurement frequency. We propose frequency- and time-domain transport experiments, from which eigenmodes can be determined using this model.
We report on the dramatic evolution of the quantum Hall ferromagnet in the fractional quantum Hall regime at $ u = 2/5$ filling. A large enhancement in the characteristic timescale gives rise to a dynamical transition into a novel quantized Hall stat e. The observed Hall state is determined to be a zero-temperature phase distinct from the spin-polarized and spin-unpolarized $ u = 2/5$ fractional quantum Hall states. It is characterized by a strong temperature dependence and puzzling correlation between temperature and time.
We study spin wave relaxation in quantum Hall ferromagnet regimes. Spin-orbit coupling is considered as a factor determining spin nonconservation, and external random potential as a cause of energy dissipation making spin-flip processes irreversible. We compare this relaxation mechanism with other relaxation channels existing in a quantum Hall ferromagnet.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا