ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum oscillations suggest hidden quantum phase transition in the cuprate superconductor Pr$_{2}$CuO$_{4pmdelta}$

55   0   0.0 ( 0 )
 نشر من قبل Nicholas Breznay
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

For both electron- and hole-doped cuprates, superconductivity appears in the vicinity of suppressed broken symmetry order, suggesting that quantum criticality plays a vital role in the physics of these systems. A confounding factor in identifying the role of quantum criticality in the electron-doped systems is the competing influence of chemical doping and oxygen stoichiometry. Using high quality thin films of Pr$_{2}$CuO$_{4pmdelta}$, we tune superconductivity and uncover the influence of quantum criticality without Ce substitution. We observe magnetic quantum oscillations that are consistent with the presence of small hole-like Fermi surface pockets, and a large mass enhancement near the suppression of superconductivity. Tuning these materials using only oxygen stoichiometry allows the observation of quantum oscillations and provides a new axis with which to explore the physics underlying the electron-doped side of the cuprate phase diagram.



قيم البحث

اقرأ أيضاً

82 - Xinjian Wei , Ge He , Wei Hu 2018
In this article, we studied the role of oxygen in Pr$_{2}$CuO$_{4pmdelta}$ thin films fabricated by polymer assisted deposition method. The magnetoresistance and Hall resistivity of Pr$_{2}$CuO$_{4pmdelta}$ samples were systematically investigated. I t is found that with decreasing the oxygen content, the low-temperature Hall coefficient ($R_H$) and magnetoresistance change from negative to positive, similar to those with the increase of Ce-doped concentration in R$_{2-x}$Ce$_{x}$CuO$_{4}$ (R= La, Nd, Pr, Sm, Eu). In addition, $T_c$ versus $R_H$ for both Pr$_{1-x}$LaCe$_{x}$CuO$_{4}$ and Pr$_{2}$CuO$_{4pmdelta}$ samples can coincide with each other. We conclude that the doped electrons induced by the oxygen removal are responsible for the superconductivity of $T^prime$-phase parent compounds.
We study magnetotransport properties of the electron-doped superconductor Pr$_{2-x}$Ce$_x$CuO$_{4pmdelta}$ with $x$ = 0.14 in magnetic fields up to 92~T, and observe Shubnikov de-Haas magnetic quantum oscillations. The oscillations display a single f requency $F$=255$pm$10~T, indicating a small Fermi pocket that is $sim$~1% of the two-dimensional Brillouin zone and consistent with a Fermi surface reconstructed from the large hole-like cylinder predicted for these layered materials. Despite the low nominal doping, all electronic properties including the effective mass and Hall effect are consistent with overdoped compounds. Our study demonstrates that the exceptional chemical control afforded by high quality thin films will enable Fermi surface studies deep into the overdoped cuprate phase diagram.
Second magnetization peak (SMP) in hole-doped cuprates and iron pnictide superconductors has been widely explored. However, similar feature in the family of electron-doped cuprates is not common. Here, we report the vortex dynamics study in the singl e crystal of an electron-doped cuprate Pr$_{0.87}$LaCe$_{0.13}$CuO$_4$ superconductor using dc magnetization measurements. A SMP feature in the isothermal $M(H)$ was observed for $H$$parallel$$ab$-planes. On the other hand, no such feature was observed for $H$$parallel$$c$-axis in the crystal. Using magnetic relaxation data, a detailed analysis of activation pinning energy via collective creep theory suggests an elastic to plastic creep crossover across the SMP. Moreover, for $H$$parallel$$ab$, a peak in the temperature dependence of critical current density is also observed near 7 K, which is likely be related to a dimensional crossover (3D-2D) associated to the emergence of Josephson vortices at low temperatures. The anisotropy parameter obtained $gamma$ $approx$ 8-11 indicates the 3D nature of vortex lattice mainly for $H$$parallel$$c$-axis. The $H$-$T$ phase diagrams for $H$$parallel$$c$ and $H$$parallel$$ab$ are presented.
In cuprates, the strong correlations in proximity to the antiferromagnetic Mott insulating state give rise to an array of unconventional phenomena beyond high temperature superconductivity. Developing a complete description of the ground state evolut ion is crucial to decoding the complex phase diagram. Here we use the structure of broken translational symmetry, namely $d$-form factor charge modulations in (Bi,Pb)$_2$(Sr,La)$_2$CuO$_{6+delta}$, as a probe of the ground state reorganization that occurs at the transition from truncated Fermi arcs to a large Fermi surface. We use real space imaging of nanoscale electronic inhomogeneity as a tool to access a range of dopings within each sample, and we definitively validate the spectral gap $Delta$ as a proxy for local hole doping. From the $Delta$-dependence of the charge modulation wavevector, we discover a commensurate to incommensurate transition that is coincident with the Fermi surface transition from arcs to large hole pocket, demonstrating the qualitatively distinct nature of the electronic correlations governing the two sides of this quantum phase transition. Furthermore, the doping dependence of the incommensurate wavevector on the overdoped side is at odds with a simple Fermi surface driven instability.
We performed systematic angle-resolved photoemission spectroscopy measurements $in$-$situ$ on $T$-${rm La}_{2-x}{rm Ce}_xrm {CuO}_{4pmdelta}$ (LCCO) thin films over the extended doping range prepared by the refined ozone/vacuum annealing method. Elec tron doping level ($n$), estimated from the measured Fermi surface volume, varies from 0.05 to 0.23, which covers the whole superconducting dome. We observed an absence of the insulating behavior around $n sim$ 0.05 and the Fermi surface reconstruction shifted to $n sim$ 0.11 in LCCO compared to that of other electron-doped cuprates at around 0.15, suggesting that antiferromagnetism is strongly suppressed in this material. The possible explanation may lie in the enhanced -$t$ /$t$ in LCCO for the largest $rm{La^{3+}}$ ionic radius among all the Lanthanide elements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا