ترغب بنشر مسار تعليمي؟ اضغط هنا

Observation of quantum-limited heat conduction over macroscopic distances

64   0   0.0 ( 0 )
 نشر من قبل Matti Partanen
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The emerging quantum technological apparatuses [1,2], such as the quantum computer [3-5], call for extreme performance in thermal engineering at the nanoscale [6]. Importantly, quantum mechanics sets a fundamental upper limit for the flow of information and heat, which is quantified by the quantum of thermal conductance [7,8]. The physics of this kind of quantum-limited heat conduction has been experimentally studied for lattice vibrations, or phonons [9], for electromagnetic interactions [10], and for electrons [11]. However, the short distance between the heat-exchanging bodies in the previous experiments hinders the applicability of these systems in quantum technology. Here, we present experimental observations of quantum-limited heat conduction over macroscopic distances extending to a metre. We achieved this striking improvement of four orders of magnitude in the distance by utilizing microwave photons travelling in superconducting transmission lines. Thus it seems that quantum-limited heat conduction has no fundamental restriction in its distance. This work lays the foundation for the integration of normal-metal components into superconducting transmission lines, and hence provides an important tool for circuit quantum electrodynamics [12-14], which is the basis of the emerging superconducting quantum computer [15]. In particular, our results demonstrate that cooling of nanoelectronic devices can be carried out remotely with the help of a far-away engineered heat sink. In addition, quantum-limited heat conduction plays an important role in the contemporary studies of thermodynamics such as fluctuation relations and Maxwells demon [16,17]. Here, the long distance provided by our results may, for example, lead to an ultimate efficiency of mesoscopic heat engines with promising practical applications [18].



قيم البحث

اقرأ أيضاً

A quantum Maxwell demon is a device that can lower the entropy of a quantum system by providing it with purity. The functionality of such a quantum demon is rooted in a quantum mechanical SWAP operation exchanging mixed and pure states. We describe t he setup and performance of a quantum Maxwell demon that purifies an energy-isolated system from a distance. Our cQED-based design involves two transmon qubits, where the mixed-state target qubit is purified by a pure-state demon qubit connected via an off-resonant transmission line; this configuration naturally generates an iSWAP gate. Although less powerful than a full SWAP gate, we show that assuming present-day performance characteristics of a cQED implementation, such an extended quantum Maxwell demon can purify the target qubit over macroscopic distances on the order of meters and tolerates elevated temperatures of the order of a few Kelvin in the transmission line.
We analyze the heat current flowing across interacting quantum dots within the Coulomb blockade regime. Power can be generated by either voltage or temperature biases. In the former case, we find nonlinear contributions to the Peltier effect that are dominated by conventional Joule heating for sufficiently high voltages. In the latter case, the differential thermal conductance shows maxima or minima depending on the energy level position. Furthermore, we discuss departures from the Kelvin-Onsager reciprocity relation beyond linear response.
The manipulation of matterwave represents a milestone in the history of quantum mechanics. It was at the basis of its experimental validation through the observation of diffraction of matter on crystals, as well as grating and Youngs double-slit inte rference with electrons, neutron, atoms and molecules. More recently matterwave manipulation has become a building block in the implementation of quantum devices such as quantum sensors and it plays an essential role in many proposals for implementing quantum computers. In this letter we coherently control the spatial extent of the wavefunction by reversibly stretching and shrinking the wavefunction over a millimeter distance. The remarkable experimental simplicity of the scheme would ease applications in the field of quantum transport and quantum computing.
The world communicates to our senses of vision, hearing and touch in the language of waves, as the light, sound, and even heat essentially consist of microscopic vibrations of different media. The wave nature of light and sound has been extensively i nvestigated over the past century and is now widely used in modern technology. But the wave nature of heat has been the subject of mostly theoretical studies, as its experimental demonstration, let alone practical use, remains challenging due to the extremely short wavelengths of these waves. Here we show a possibility to use the wave nature of heat for thermal conductivity tuning via spatial short-range order in phononic crystal nanostructures. Our experimental and theoretical results suggest that interference of thermal phonons occurs in strictly periodic nanostructures and slows the propagation of heat. This finding broadens the methodology of heat transfer engineering by expanding its territory to the wave nature of heat.
As is well known, the fluctuations from a stable stationary nonequilibrium state are described by a linearized nonhomogeneous Boltzmann-Langevin equation. The stationary state itself may be described by a nonlinear Boltzmann equation. The ways of its linearization sometimes seem to be not unique. We argue that there is actually a unique way to obtain a linear equation for the fluctuations. In the present paper we treat as an example an analytical theory of nonequilibrium shot noise in a diffusive conductor under the space charge limited regime. Our approach is compared with that of Schomerus, Mishchenko and Beenakker [Phys. Rev. B 60, 5839 (1999)]. We find some difference between the present theory and the approach of their paper and discuss a possible origin of the difference. We believe that it is related to the fundamentals of the theory of fluctuation phenomena in a nonequilibrium electron gas.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا